
A Small Leak Will Sink Many Ships: Vulnerabilities
Related to mini-programs Permissions

1st Jianyi Zhang
Beijing Electronic Science and

Technology Institute
Beijing, China

zjy@besti.edu.cn

2nd Leixin Yang
Beijing Electronic Science and

Technology Institute
Beijing, China

3rd Yuyang Han
Beijing Electronic Science and

Technology Institute
Beijing, China

4th Zixiao Xiang
Beijing Electronic Science and

Technology Institute
Beijing, China

5th Xiali Hei
University of Louisiana at Lafayette

Lafayette, US

xiali.hei@louisiana.edu

Abstract—As a new format of mobile application, mini-
programs, which function within a larger app and are built with
HTML, CSS, and JavaScript web technology, have become the
way to do almost everything in China. Many researchers have
done the ecosystem or developing study, while the permission
problem has not been investigated yet. In this paper, we present
our studies on the permission management of mini-programs
and conduct a systematic study on 9 popular mobile host app
ecosystems that host over 7 million mini-programs. After testing
over 2,580 APIs, we extracted a common abstract model for
mini-programs’ permission control and revealed six categories
of potential security vulnerabilities due to improper permission
management. It is alarming that the current popular mobile app
ecosystems (i.e., host apps) under study have at least one security
vulnerability due to the mini-programs’ improper permission
management. We present the corresponding attack methods to
dissect these potential weaknesses further to exploit the discov-
ered vulnerabilities. To prove that the revealed vulnerabilities
may cause severe consequences in real-world use, we show three
kinds of attacks without privileges or cracking the host apps. We
have responsibly disclosed the newly discovered vulnerabilities,
and two CVEs were issued. Finally, we put forward systematic
suggestions to strengthen the standardization of mini-programs.

Index Terms—mini-programs, mini-apps, permission, API, mo-
bile apps

I. INTRODUCTION

Mini-programs are light applications (commonly 2-4 MB)

that run inside a specific mobile app (host app) [1]. As a

new mobile application form, leveraging web technologies like

HTML, CSS, and JavaScript, mini-programs are taking over

China’s iOS and Android app ecosystems. The mini-program

technology enables the “super app” to bundle features and

capabilities into a single mobile native APP, which allows

the users never need to leave this native app. We call the

native app a host app. Many host app vendors, such as Tencent

(WeChat), ByteDance (TikTok), and Alibaba (Alipay), provide

Partially supported by the NSF CNS-1650551, OIA-1946231, CNS-
2117785, OIA-2229752

Fig. 1. Tesla mini-program in WeChat. Two ways to access a WeChat mini-
program. The one on the upper left shows accessing a mini-program in the
WeChat recent menu and the lower left shows the main entry point (Main
page-Discover–mini-programs.

their unique framework to support the mini-programs [2].

There are various ways to launch a mini-program in these

host apps. Users can scan a QR code, directly search the

name in the host app, share with a group or friend, or even

launch it with a hyperlink from other mini-programs. As

an example, Figure 1 shows how to launch the Tesla mini-

program in WeChat. Mini-programs are easy to use, with

a clear interface and short loading time. People use mini-

programs daily without worrying about installing too many

apps. Using a mini-program, a user can complete many tasks

like paying bills, playing games, ordering a taxi, booking a

doctor’s appointment, etc. As of 2022, the number of monthly

active users (MAU) of WeChat is over 1.31 billion [3].

TikTok [4] and Alipay [5] has over 1 billion and 668 million

MAU, respectively. The total number of mini-program users

is close to that of Facebook, the most popular social network

worldwide, with about 2.96 billion MAUs [6].

595

2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC)

979-8-3503-2697-0/23/$31.00 ©2023 IEEE
DOI 10.1109/COMPSAC57700.2023.00085



Since the widespread use of mini-programs, any incorrect

permission granting or settings can result in serious security

and privacy problems. However, there is not much research

focused on this issue. That is not only because it is a new

mobile application format, but also, more importantly, the

permission structure of mini-programs is entirely different

from any other current permission-based security model. As

we know, the mobile operating system (OS) is responsible

for allowing or denying access to specific resources at the

app’s run time [7]. The developers should declare a list

of permissions that the user must grant before installing

or running an application. Then the OS uses this security

model to restrict every mobile app, native or hybrid, access to

advanced or dangerous functionality on the device [8]. Unlike

the current access control models and authorization methods,

the permissions of mini-programs are based on the host app

authorization. That is, Android or iOS decides whether or not

to allow the host apps to have some specific permissions,

and the host apps authorize the mini-program to obtain the

data. Therefore, from the view of OS, it is impossible to

control the permissions of mini-programs directly, meaning

mini-programs may request permissions from OS by using the

reputation of host apps. Improper management of the mini-

program’s permission may cause security problems [9].

The permission issues in mobile applications have been

thoroughly studied, and its permission management mecha-

nism is relatively complete and formal [10]–[18]. However,

the approaches proposed by these studies cannot solve the

security issues in the permission control of the mini-programs.

The mix of permissions that require user and API authorization

results in complex management. Although [19] shows a similar

problem, the target and runtime environments are different

from mini-programs. [20] and [21] describe the problem of

restricting access when the user and OS must both approve.

However, the main problem is the user and OS respond to

permission requests from different targets. So we cannot utilize

their research to solve our problems.

In this paper, we present our systematic studies of the

current mini-programs’ permission management, where we

dissect its framework, ecosystem, and potential vulnerabilities.

We refer to the definition of sensitive permission in Android

and iOS and conduct a series of examinations on mini-

programs. Specifically, we systematically studied 9 popular

mobile app ecosystems hosting more than 7 million mini-

programs. Then we establish an abstract model for existing

mini-programs’ unique permission request process. To present

a clear approach to discover the vulnerabilities, we define the

security principles that the mini-program should be enforced.

According to the abstract model and security principles, we

investigated more than 2,580 APIs and revealed six categories

of potential security vulnerabilities common in most mini-

programs we studied. We described three interesting cases

of APIs and illegal mini-programs to prove that the exposed

vulnerabilities may cause serious consequences on real-world

systems. Finally, we have listed security recommendations for

mini-programs, developers, and users to mitigate the threat of

Fig. 2. The common framework of mini-programs. If a mini-program wants
to obtain data, it will first request permission from host app, then the host
app request permission from OS. After the user grants the permission, the
mini-program gets the data from host app by calling APIs.

these vulnerabilities.

In summary, we have made the following contributions in

this paper:

• We thoroughly examined the current mini-program per-

missions. Our work deepens the understanding of per-

mission management’s complexity of mini-programs. We

summarize an abstract model of the mini-program per-

mission control and propose a simple security principle

to analyze or discover vulnerabilities more straightfor-

wardly. To the best knowledge, we systematically studied

the mini-programs’ permission management issues for the

first time.

• We have detected more than 2,580 APIs. Through large-

scale tracking and analysis of sensitive permission APIs,

we have found six categories of potential security vulner-

abilities during processing sensitive permission requests

from mini-programs.

• We conducted empirical research on the currently popular

9 host apps and revealed the security issues corresponding

to the 6 types of potential security vulnerabilities and 3

real-life attacks on the mini-program permissions. Two

of them were identified as CVEs.

• To mitigate these potential vulnerabilities, based on the

security principles and access control framework, we put

forward suggestions to strengthen the standardization of

the entire mini-programs’ permission, thereby enhancing

user privacy.

II. BACKGROUND

A. Framework of Mini-programs

Mini-programs are a category of applications embedded in

host apps without the need for downloads and installation [22].

The flow of mini-program framework consists of two com-

ponents: View (the rendering layer) and App Service (the

logic layer), which are respectively managed by two separate

threads, as exhibited in Figure 2. The interface of View is

596



rendered by the WebView component, which handles page

displaying and the user event interaction behavior, while the

App Service employs JsCore threads to run JavaScript, for

controlling the generation and processing of mini-programs

data. The communication between two threads is relayed by

the Native app (which refers to the client).

The host app in the framework determines whether the mini-

program has permission to access the specific data through

the corresponding API. That is, as shown in Figure 2, OS

determines whether to allow host apps to have some specific

permissions, and host apps then can transmit authorized data

to the mini-program through the API. In other words, the

permission of mini-programs is inherited from the host app.

Hence, if a host app does not properly manage the data and

permission, data privacy and security issues will occur in its

mini-programs. In this paper, we will focus on the data privacy

leakage and wrong permission request authorization issues

incurred by improper management of a host app.

B. Mini-programs v.s. Web-based Apps

The mini-programs and their host apps are highly similar

to web apps and web browsers. Generally, web apps utilize

HTML5 APIs for permission management. It is a unified

framework for all web apps under different OS. However, the

host app manages the mini-programs’ permission. Different

vendors have their own APIs and schemes.

Similar to the mini-program, a progressive web app (PWA)

also adopts web technology. But differently, a PWA is a type of

webpage or website that runs in the browser and can be added

to the home screen. Hence, the host environment of the PWA

is the browser, and the OS manages the PWA’s permission

through the browser. Mini-programs can be considered as

one type of “Instant” app embedded in host apps. The host

environment is a platform with extra capabilities that can

support seamless service and access control for the user data.

Google’s instant app [23] is very similar to mini-programs.

Both of them allow users to access the application’s con-

tent without additionally installing the application. Thus, the

application space on the device could be saved. In essence,

Google’s instant app is still a native app and under the OS’s

permission control, while the mini-program is under the host

apps’ permission control.

C. Authorization

Permissions in mobile apps can be divided into two types,

install-time permissions and runtime permissions [24]. Here,

the runtime permission is also called dangerous permission,

which is related to users’ privacy and can access users’ private

data, such as location information, contact information, etc.

This information is considered sensitive and should acquire

user authorization for access. When requesting the runtime

permission, the system will display a prompt window, as

shown in Figure 3.

According to Section II-A, the framework provides rich

APIs to support the mini-programs to request a resource such

as user profiles, location information, payment functions, etc.

Fig. 3. Under the iOS system, the system permission prompt is displayed
when the Alipay app requests runtime permission (left) and the pop-up
window when a mini-program in Alipay app requests permission from the
host app (right).

However, the user does not authorize the API directly. In mini-

program development, the framework divided the dangerous

APIs into multiple groups, which are named scope associated

with different permissions. The users can select scope to

authorize the permissions. After a scope is authorized by user,

all of the APIs in this scope can use the data directly, i.e., they

have the same permission.

D. Permission Control Abstract Model

We summarize an abstract model that is common to all mini-

programs’ permission control, depicted as follows.

Host App OS

 Allow or Reject ?

Allow!

Host App Reject, OS Allow

OS Reject

 Request A  Allow or Reject ?

 Allow or Reject ?

 Allow or Reject ?Reject!

 Allow or Reject ?
Reject!

 Request A

 Request B

 Request B

 Request C

Allow!

Mini Program 

Allow!

Obtained Permission AObtained Permission A

Host App Allow, OS Allow

Obtained Permission B

Not Obtained Permission B

Not Obtained Permission C Not Obtained Permission C

Fig. 4. The sensitive permission request process of mini-programs. Mini-
programs run in specific mobile applications (host apps), while mobile
applications run in the OS.

Mini-programs are “sub-applications” built on mature mo-

bile applications, which are built on the OS. So, mini-programs

need to pass two-layer authorization when requesting sensitive

597



permissions from users. When mini-programs need access to

sensitive information, they first need to request the authoriza-

tion of their host app, and then the host App needs to request

the authorization of OS. As shown in Figure 4, according to

whether the host app and OS permit or deny the application’s

permission request, we categorize the request process into the

following three cases:

• Both Host App and OS Allow If a mini-program

requests sensitive permission A, the host app will pop up

a window to ask whether the user is willing to grant the

permission. If the user grants the permission, the host app

will continue to request sensitive permission A to the OS,

and the OS will pop up a window. Once the user agrees,

the mini-program will successfully obtain the requested

sensitive permission. Later, when the users use the mini-

program again, they can directly call the interface and

obtain the data.

• Host App Reject but OS Allow In this case, the host app

has obtained permission B given by the OS, but when

the mini-program wants to request permission B, such

permission request is refused. Hence, the mini-program

should not be able to obtain permission B since the mini-

program does not inherit the host app’s permission. In

our later analysis in Section III, most vulnerabilities we

discovered belong to this category.

• OS Reject If the host app does not get the permission

C given by the OS, neither the host app nor the mini-

programs in it can get this permission. It is worth noting

that when the program calls the API that requires per-

mission, the application will still send a notification and

ask for permission as normal. However, whether the user

permits or denies it, the mini-programs will not have this

permission.

III. SECURITY ANALYSIS

A. Security Principles

According to host-app vendors’ technical documents, we

define the security principles that the mini-program should be

enforced are: Any operations on the data related to a user’s
privacy need to require the user’s authorization, whether the
request is from the mini-program or host app. The form of

request permission can be a pop-up window or an interactive

user operation. If the mini-program can obtain sensitive data

when the user has no functions or rejects the requests, we

recognize that a mini-program has gained unauthorized per-

mission.

B. Access Control Framework

If the mini-program APIs access sensitive resources, a host

app enforces the mini-program permission by calling the mini-

program APIs. Although different host app vendors create

different APIs, according to Section II-C, we know that all

mini-programs use the traditional permission label, scope, an

assignment model to manage the permission.

The host app designers believe that since all the APIs used

by the mini-program come from the host, the mini-program is

trustworthy. For interfaces involving user privacy, the user’s

authorization must be required. The vendors classify these

interfaces into several authorization scope such as location,

address, camera, etc. This permission scheme exists in all the

host apps we analyzed. Specifically, WeChat defines a scope
called “scope.camera”. In contrast, Ali defines a scope called

“my.scan”.

C. Adversary Model

In this paper, we assume that the adversary aims to steal all

kinds of users’ privacy by exploiting the improper manage-

ment of the mini-program’s permission. The research makes

the following assumptions. (i) We assume that the adversary

is the mini-programs or the developers of the mini-programs.

They want to steal the data without the user’s awareness. (ii)
The adversary can obtain all the official APIs and uses them

effectively. (iii) The adversary does not need malicious apps

installed on mobile phones and does not need privileges to

execute malicious codes. (iv) The adversary does not need

Android rooting or iOS jailbreaking. (v) The adversary is very

familiar with the directory structure of mini-programs.

D. Potential Vulnerabilities

Followed by our security principles, we conduct a large-

scale analysis of permission-related APIs from different host

apps. A total of 2,580 APIs are detected through manual

or semi-automatic [25] programming. Then we identify the

following six categories of potential security vulnerabilities in

mini-programs’ sensitive permission request process.

1) Reuse Cache Files: When a user quits or deletes the

mini-programs, the cache files in the corresponding path

should also be deleted to avoid being reused. However, when

we close a mini-program, either on iOS or Android, we find

that some host apps do not completely empty the cache files.

Although other mini-programs cannot access this cached file,

the malicious mini-program can still reuse this cached file after

another user logs in. This is not a high-level risk. However,

since reading these cache files does not require privileges, the

attackers can obtain the different users’ private data that is

stored in the cache file easily without the user’s awareness.

Hence, improper management of the cache files still brings

privacy risks to the user.

2) Permission Encapsulation in Leaked APIs: Some APIs

related to sensitive permissions do not encapsulate permissions

well (we refer to these APIs as PEL-API). This means that

any mini-program can directly call these APIs to obtain

the corresponding permissions, ignoring the need to request

permission within the host app. The security issue incurred

during the sensitive permission request process is illustrated

in Figure 6. When the host app obtains a dangerous permission

B from the OS, since some APIs are not encapsulated well by

host app vendors, in some cases, the mini-programs can obtain

the permission without giving the user a notification. Also, in

some cases, the mini-program can still get permission when

the user rejects it. We divide these vulnerabilities into four

598



Vulnerabilities

Permission
Application Host App Allow, OS Allow Host App Reject, OS Allow OS Reject

Security Risks

Permission Encapsulation Leaked API

Forgotten API Under Permission Control

Parameter Settings Ignored

Invalid Permission Setting

Qualified Conditions Ignored

Secretly Transfer Sensitive Data

Permission Management Issues

Permissions Difference in
Different Environments

Contacts Attack Location Information Attack Clipboard Content AttackCollect and use user privacy, personal information abuse.

Reuse Cache Files

WebView Bypasses Permission Control Path1Path2

Fig. 5. The vulnerabilities and attacks in the mini-programs’ permission granting process.

 Allow or Reject ?
 Request B

Allow!

Obtained Permission B

Obtained Permission B

No Ask!

 Allow or Reject ?Reject!

 Request B

Obtained Permission B

Host App OSMini Program 

Fig. 6. When Host App Reject and OS Allow, mini-programs illegally obtain
the process of sensitive permissions.

categories according to the reasons and methods of getting

permission.

Qualified Conditions Ignored. According to the description

in Section III-B, when the user must manually operate the

sensitive permissions like view, select, or transmit private

data, the mini-program will consider that the user has allowed

the use of rights in default, so that there will be no pop-up

window. In other words, these APIs do not belong to any scope
(mentioned in Section II-C). And as long as the OS gives the

relevant permissions to the host app, the mini-programs can

call these APIs directly and get data at will. It is not a design

fail since the user is aware of reading or processing private

data. At this time, sensitive data can only be used when the

user interacts with the mini-program, which means the user

controls his/her sensitive information by him/her-self. Mini-

programs cannot steal the user’s sensitive information through

this type of APIs.

However, we found that the host app designer may not

put the sensitive APIs into the scope. As a result, the mini-

program can obtain sensitive data directly without requesting

permission. For example, the host app vendors continue to

upgrade their software, and some new APIs will be added

during these upgrades. These newly added APIs may be

extensions of an old API or have similar functions. If the

old API does not belong to any scope for the above reason,

it is possible that these host app vendors do not put this

new API into scope, too. However, by this new API, the

mini-program may obtain sensitive data without the user’s

interactive operation, that is, the user’s awareness. So this new

API becomes a new privacy risk. We believe these APIs ignore

the qualification of sensitive permission (whether private data

will be stolen without the user’s awareness).

Forgotten API Under Permission Control. The host apps

handle whether the sensitive information can be passed to the

mini-program. For example, almost all host apps consider ob-

taining “location information” as dangerous permission. When

the user refuses the permission requests, the mini-program

itself cannot locate the user’s specific location, regardless of

whether the host app has obtained the permission. However,

the host app vendor neglected that some APIs should ask for

authorization before sending the location information to the

mini-programs. In other words, these APIs do not belong to

any scope and can be called without users’ authorization.

Parameter Settings Ignored. From the point of view of

its functions, some APIs may not actively obtain the user’s

sensitive permissions. However, the host app vendor neglects

the parameter settings in API, which will also steal users’

private data. For example, my.chooseCity in the Alipay mini-

programs is an API to open the city selection list. The

parameter showLocatedCity indicates whether to display the

currently located city. If it is set to true, the user’s current city

will be directly located regardless of whether the host program

grants the location permission for the mini-programs. If the

user does not do anything, we cannot see any content about

the location information in the background. However, as long

as the user selects the area located by the system, the host app

will return the current city, latitude, and longitude to the mini-

program in the background, even if the mini-program does not

have the location permission at this time.

Invalid Permission Setting. Some APIs’ permission settings

are inconsistent with their official documents’ descriptions.

To some extent, it shows that the API related to sensitive

permissions in mini-programs does not encapsulate permission

well. For example, wx.choosePoi in mini-programs hosted

by WeChat implements the function of opening the map

and selecting the location. It is indicated in the document

that the invocation of this API requires the authorization of

scope.userLocation. However, in the actual test, we found

599



that the location can be selected without users’ authorization;

and such a case is inconsistent with the official document

description. When the user chooses precise positioning, the

host app will return the latitude and longitude data of the

current user in the background.

3) Stealthily Transferring Sensitive Data: Vertical: Differ-

ent mini-programs under the same host app transmit sensitive

data. The request process for this vulnerability is shown

in Figure 6. When the mini-programs’ developer has some

relationships with the host app vendor, like acquired by the

host app vendor, the mini-program can obtain the users’ data

directly from the host apps without popping up permission

request. Then, the method shown in Figure 6 can bypass user

authorization for stealthily transmitting a user’s sensitive data.

Horizontal: Different mini-programs developed by the same

company may share user information. All the user’s sensitive

permissions acquired by the mini-programs should be made

visible to the user, and the user should have the right to

disallow the mini-program to acquire the sensitive permissions.

However, our empirical study found that some mini-programs

obtain and leverage the user information in their associ-

ated mini-programs by default, including account information,

shipping address, etc. This type of mini-programs skips the

permission request step, and the permission settings pop-up is

blank so that the user cannot revoke the relevant permissions.

4) Permission Management Issues: A mini-program may

continue to use sensitive permissions to collect users’ private

information even if a user wants to revoke the permissions

after using it. In particular, it can be divided into the following

three situations.

Permission Setting Page Disappears. The permission set-

ting page allows users to manage the permissions of mini-

programs. However, some mini-programs may obtain perma-

nent authorization after a one-time authorization due to the

disabled or disappeared permission setting page. In this case,

users cannot view what permissions they have granted to a

mini-program, and they cannot cancel the previously autho-

rized permission. As long as the host app is not uninstalled,

the permission authorization will remain valid. Thus, a mini-

program can use the previous authorization to continuously

gather and use the user’s personal information.

Permission Cannot be Revoked. Regarding the validity pe-

riod of authorization of mini-programs, once a user explicitly

agrees or rejects the authorization, such an authorization

relationship will be recorded in the background until the user

actively deletes the mini-programs. However, the permissions

of some mini-programs may not be able to be revoked, and

it can cause harmful consequences. These mini-programs will

be able to use the previous authorization to continue collecting

and using the user’s personal information.

Unable to Completely Revoked Permissions. The permission

settings of mini-programs should be revoked if the user

actively removes the mini-programs. However, some host

apps forget to clear these permission settings. So permission

settings of some sensitive personal information (such as ID

number) will be retained after the mini-program is re-installed.

Host App OS

 Allow or Reject ?
 Request C

Mini Program 

Obtained Permission C

Reject!

Not Obtained Permission C

No Ask!

Fig. 7. When OS Reject, mini-programs illegally obtain the process of
sensitive permissions.

However, when the mini-program is re-installed again, the

setting options of related permissions will not be on the

mini-programs’ settings page, and the user cannot completely

remove the permission.

5) WebView Bypasses Permission Control: The mini-

programs can use the WebView component to carry H5 web-

page. In this process, the loaded H5 page needs to manually

import JS files (i.e. a web development toolkit based on the

host apps for web developers) provided by each platform. In

this way, developers can use the capabilities provided by the

mobile phone, such as camera, Bluetooth, and GPS, to bring

users a better experience. After the empirical study, as shown

in Figure 7, we find that WebView component can bypass the

specified API when the mini-programs or host apps do not give

a pop-up for permission request or the user refuses permission

request after the notification.

There are two scenarios to illegally obtain sensitive permis-

sions for mini-programs after using the WebView component.

Scenario I: the mini-programs may completely ignore the

OS’s permission control over host apps and host apps’ per-

mission control. They can directly access any sensitive permis-

sions without notifying a user. Even when OS rejects sensitive

permission requests from a host app, the mini-programs can

still obtain such permissions through the WebView component.

Scenario II: only the OS’s permission control over host apps is

considered, while the host apps’ permission control over mini-

programs is ignored. The specific process is shown in Figure 6.

In this case, if the OS’s permission control on host apps is

disabled, the mini-programs will not obtain the corresponding

sensitive permissions. If the OS’s permission control on the

host app is enabled, a user allows host apps to use certain

sensitive permissions. Hence, any mini-program in host apps

can obtain sensitive permissions. We would like to remark that

both scenarios may result in the disclosure of user privacy.

6) Permission Issues in Different Environments: The mini-

program framework uses the same running codes for iOS and

Android. However, the processing details for some APIs are

not the same between different OS and versions. Since the

framework cannot handle these APIs differently, the same

operations or program codes will have different results under

different running environments. For example, apps can read

the clipboard contents without the user’s manually selecting

“Paste” when the user copies something. This is by design.

Nevertheless, if the user copies sensitive information and

leaves it on the clipboard, all apps can capture it and send

it to a remote server. Copying private data from a clipboard

is risky. Different versions of OS have different feedback on

this. The Android or old version of iOS will not inform the

600



TABLE I
THE LIST OF COLLECTED 9 HOST APPS.

Company Host App Monthly Active Users

Tencent
WeChat 1.31 billion [3]

Tencent QQ 574 million [26]
Alibaba Alipay 668 million [5]

ByteDance
TouTiao

731 million
[27]

TouTiao speed Edition
TikTok 1+ billion [4]

Baidu Baidu 634 million [28]
Multi Vendors QuickAPP 130 million* [29]

China UnionPay UnionPay 10.6 million [30]
* Only contains Huawei’s data.

user when an application reads the clipboard. Many host apps

will also be silent when the mini-program reads the clipboard.

If OS or host app does not consider the clipboard permission

dangerous, mini-programs with access to the clipboard can

steal the clipboard information of users in the background.
7) Clipboard Content Attack: Since the mini-program’s

framework does not restrict the apps from reading the clip-

board, developers only need a few lines of code to see

what users have just copied. If users copy an online banking

password to paste and leave this private information on the

clipboard, a malicious mini-program can read it in the back-

ground and see that data directly. The same goes for other

sensitive data like names, addresses, credit card numbers, or

even private photos. Mini-programs can capture everything

from a user’s clipboard and do whatever they want with it.

The copied texts could be sent to a remote server without a

user’s awareness. More details can be found in Section V-C.

IV. EMPIRICAL STUDY

This section presents our empirical study for analyzing the

current mini-programs permissions and examines the APIs for

potential vulnerabilities according to Section III. Our goal is

twofold. First, we collect the current popular mini-program

platforms (Table I), and then expose potential vulnerabilities

as outlined in Section III. We also exhibit the security issues

exposed in the real world through detection. Second, we con-

duct case studies to show some real attacks based on improper

permission management of mini-programs, to prove that the

revealed vulnerabilities may cause severe consequences in

real-world use.

A. Mini-programs Ecosystem

We select 9 popular host apps developed by 6 companies,

which are listed in Table I. Each host app has its development

tools. We use the respective development tools to test on

different host apps. Through empirical study, we discuss their

vulnerabilities and list them in Figure 8. The orange blocks

indicate that the host app has corresponding vulnerabilities;

green blocks indicate that the host app has fixed vulnerabil-

ities; gray block indicates that the host app does not have

such a vulnerability; and light yellow blocks indicate that it is

uncertain if there exists such a vulnerability.

B. Vulnerability Analysis

1) Vulnerable Caching Mechanism: Our study discovered

that in WeChat, when a user closes the used mini program

TABLE II
THE LIST OF COLLECTED PEL-APIS.

Vulnerabilities Host App API
Ignore WeChat wx.searchContacts

Forgotten QQ
MapContext.moveToLocation

MapContext.getCenterLocation
Parameter Alipay my.chooseCity

Invalidation WeChat wx.choosePoi

but not being deleted from the recent use) list, and reopens

the mini-program, the previously cached temporary files still

exist. Because the local temporary file path can be obtained

in the background, and reading this file does not require

privileges, the temporary file can be reused without the user’s

awareness before being recycled. In QQ and ByteDance, as

long as the user exits the mini programs or reopens the

previously used mini-programs, the previous temporary files

will be automatically deleted. Hence, they do not have this

vulnerable caching concern. Meanwhile, we are not sure if

this vulnerability exists in other host apps since we did not

find the cache files of the mini-programs in the local folder or

if the mini-program does not support personal testing. So this

vulnerability has not been found temporarily in mini-programs

of other host apps. We will keep an eye on this problem. (See

Figure 8 “Cache-related issues”.)

2) Vulnerable APIs: As discussed in Section III-D2, this

kind of issue comes from those APIs that are related to

sensitive permissions but cannot encapsulate permissions well.

In order to find APIs with such vulnerabilities, according to the

security principles mentioned in Section III-A, we set two cri-

teria for analysis: 1) Whether the permission request needs to

be granted by the user under the Android and iOS permission

policy. 2) Whether there is human interaction in the process

of private data acquisition. Suppose the user must manually

operate to view, select or transmit private data. In that case, the

mini-programs will consider that the user is aware of this pro-

cess and allowed permission without notification. Otherwise,

a permission popup should be displayed. Table II summarizes

the APIs that we have found so far that are related to sensitive

permissions but do not encapsulate permissions well. (See

Figure 8 “Ignore, “Forgotten”, “Parameter”, “Invalidation”.)

3) Vulnerable Permissions Transfer: Vertical: The mini-

program “Amap” in the Alipay host app can be opened directly

to precisely locate the user, ignoring the mini-program’s re-

quest for the user’s location permission. Although Alipay and

AMap have reached an in-depth cooperative relationship (both

belong to Alibaba Group) [31], this does not mean that their

operations can bypass the user’s willingness. No abnormality

is found in the public test code of “official demo” provided by

Alipay, but using this mini-program alone can directly locate

users precisely. It shows that there may be an inconsistency

between the source code of “demo” and the public test code

provided. The attackers may use other ways to bypass the user

authorization to transmit the user’s location secretly.

Horizontal: Some companies may share user information

among different mini-programs. For example, after logging

in to the “Pinduoduo” mini-program in WeChat, the same

601



WeChat

QQ

Alipay

Baidu

TikTok

TouTiao

TouTiao Speed

Edition

QuickAPP

Web-view

bypasses
Permission

management

Environmental

differences
Cache-related

issues

Existed Vulnerability Fixed Vulnerability after Our Report Unknown or No Discovery Yet

Parameter Invalidation Secretly transferIgnore Forgotten

Non-existent

UnionPay

Cell format: Left Android Right iOS

Fig. 8. The vulnerabilities distributions in the collected 9 host apps, where the vertical axis lists the names of host apps and the horizontal axis lists the
vulnerabilities that we have discussed in Section 3. The left part of the cell is the analysis result on Android, and the right is iOS.

login information is displayed directly when the user first uses

another mini-program named “Pinduoduo Coupon”, which is

from the same company. This type of mini-program skips

the permission request, and there is no configurable option

on the permission setting. So the user cannot revoke the per-

mission to access these data. Thus, users cannot fully control

the dissemination of their personal information. It will lead

to the continuous accessibility of personal information and

pose personal information at risk of being used in unknown

circumstances. The issue can be called cross-mini-program

authorization.

It’s common to share the login credential between mobile

apps like Single sign-on (SSO). However, we found that the

information shared between mini-programs from the same

developer/company includes not only login credentials but also

user information, even data that requires access permissions,

such as location. Although we did not discuss their isolation

in this paper, the information sharing still needs to notify the

user. (See Figure 8 “Secretly transfer”.)

4) Insecure Permission Management: The permission man-

agement of UnionPay mini-programs is rather messy. Since

the security of UnionPay is mainly related to user identity

information and payment, it is not very strict to consider

other sensitive permissions such as microphones, geographic

locations, cameras, and photo albums. On the privacy settings

page of the UnionPay APP, we can see the permission setting

options for mini-programs. However, only the authorization

of the phone number and identity information (name, ID

number) is displayed. In contrast, permissions on other sen-

sitive information such as location, access to mobile phone

albums, and the camera are ignored, and there is no permission

setting page inside mini-programs. When a user grants mini-

programs hosted by UnionPay sensitive permission, such as a

microphone, geographical location, camera, and photo album,

as long as the UnionPay app is not uninstalled, the other

mini-programs hosted by UnionPay can always access these

permissions.

We found that, in ByteDance, the permission of mini-

programs cannot be removed with the deletion of the mini-

programs. In ByteDance’s official document, there is no clear

explanation of the validity period of the authorization and

whether the authorization will remain valid after deleting mini-

programs. Hence, mini-programs hosted by ByteDance may

use previous authorizations to continuously access and collect

user personal information.

Although the authorized sensitive permission of Alipay

mini-programs can be deleted after a user actively deletes

the mini-program, the sensitive personal information involved

before (such as ID number) will be retained by certain mini-

programs. We have canceled the authorization and removed

the mini-program, but the relevant information can still be

accessed when entering the mini-programs again after a certain

period. At this time, the permission setting of the mini-

program becomes empty, and the user cannot set the permis-

sion on the setting page. This situation indicates that after the

user revokes the permission, the related mini-programs do not

update the permission information in time and may continue

to collect and use the user’s sensitive information. (See Figure

8 “Perimission management”.)

5) Insecure WebView Component: Some mini-programs

can carry webpages through the WebView component. The

communication between the webpage and mini-programs is

implemented by the interface provided by the webpage de-

velopment kit, which is based on host apps provided by each

platform.

In WeChat, for Android, the user’s stored data can be

obtained using the WebView components provided by the

host app. The mini-programs can completely bypass the

normal permission control under Scenario I described in

Section III-D5. Different from that, for iOS, the mini-programs

can obtain the user’s album permission under Scenario I and

can access camera data under Scenario II. In Alipay, no

602



Fig. 9. Examples of getting clipboard contents in Android. Only 2© and 3©
will pop up a window to the user when the mini-programs get the contents
of the user’s clipboard.

matter for Android or iOS, the mini-programs can bypass

the standard permission control under Scenario II, to obtain

the data such as the user’s camera, photo album, location,

etc. When users reject these sensitive permissions, the data

can still be obtained by using the WebView component. In

Baidu, the mini-programs can obtain the camera permission

to take pictures for iOS under Scenario II. And the mini-

programs of QuickApp in Huawei can obtain the users’ stored

data (pictures, audio, videos, documents, etc.) under Scenario

II. The malicious mini-programs in QuickApp will get users’

precise locations without their awareness. (See Figure 8 “Web-

view bypass”.)

6) Vulnerable Clipboard Mechanism: After the iOS 14

upgrade, a pop-up will inform the user when an app reads

the clipboard’s contents. Hence, there will be a notification

when the mini-programs read the clipboard, no matter which

host apps they run inside.

Android is more complex since there are multiple versions.

For example, Xiaomi MIUI is a third-party mobile phone

OS, which is deeply optimized, customized, and developed by

Xiaomi based on Android. One version of it, Xiaomi MIUI12,

divides the access permission of the clipboard into finer granu-

larity, and users can monitor each request’s reading and writing

behavior. However, in other Android phones (such as Huawei,

Vivo, etc.), users cannot involve the clipboard’s permission

control because they will not get a notification. Under these

OS versions, we test the clipboard permission management

on different host apps in the Android environment, and check

their corresponding prompts, with results shown in Figure 9.

To exhibit that the mini-programs have obtained the contents

of a user’s clipboard, we display a modal dialog box. We

found that 6 out of the 8 host apps (cases 1, 4, 5, 6 in

Figure 9) did not give any prompt to the user when obtaining

the clipboard information, which may be vulnerable to the

clipboard content theft described in Section V-C. Cases 2 and 3

in Figure 9 show a design example that the mini-programs will

prompt when obtaining a user’s clipboard contents. However,

for Android and iOS, case 2 only reminds the user that the

mini-programs have obtained the clipboard’s contents through

a pop-up, but the user cannot block the accessing to the

clipboard. In case 3, obtaining the clipboard’s content is set

as the user’s permission to proceed. The user must select

“Allow” before the mini-program can obtain the corresponding

information. We consider these designs with the best security

usability practice.

It should be noted that, although it is set as the user’s

permission to operate in case 3, there is still an issue with

Alipay. In version 10.2.26.8000, Alipay will pop up a window

to ask the user “Request to obtain the contents of your

clipboard”. However, the clipboard contents have been pasted

on the page before clicking “Reject” or “Allow” (this is

equivalent to the mini-program still being able to obtain the

clipboard information after the user refuses the permission

authorization). While in version 10.2.23.7100, users cannot

get any content after clicking “Reject”. (See Figure 8 “Envi-

ronmental differences”.)

V. CASE STUDIES

In this section, we present our case study of some represen-

tative APIs and privacy issues in mini-programs.

A. Stealing Location Information

In the QQ mini-program, the index.js file uses

qq.createMapContext to create a MapContext object. After

the user use MapContext.moveToLocation to move the map

center to the current location, the malicious mini-program

can use MapContext.getCenterLocation to get the latitude and

longitude of the current map center. In the whole process,

the user’s geographic location, latitude, and longitude can

be accurately obtained in the background without the user’s

authorization. When using Tencent’s location service [32], the

attacker can obtain the user’s precise location. We confirmed

that the QQ mini-programs could obtain the center point

of the current location without the user’s authorization,

regardless of the Android or iOS system, and successfully

transfer the data, specific location, and other information

to the mini-program. Once the mini-program associates

the location information with the account information, the

user’s personal information will be completely exposed. The

malicious mini-program can further obtain the user’s location

continuously and then calculate the user’s physical traces

easily.

Hence, the QQ example is not a missing authorization

check. The main reason is the vendor of QQ, Tencent, did

not put some location-related APIs in the scope. If the mini-

program uses these APIs, without permission management

since it is not in scope, it can obtain the local directly without

the user’s authorization.

603



B. Stealing Contacts

The API provided by the WeChat mini-programs,

wx.searchContacts, is to find the contacts and match a sim-

ilar mobile phone number. This API does not specify the

number of calls within a period. When the phoneNumber
parameter (i.e., the number to be searched) is written in a

loop, most information in the user contacts can be obtained

by traversing in sequence. Specifically, if a mini-program sets

a button in index.wxml to bind an event and writes the API

wx.searchContacts into this event in the index.js file. When a

user clicks this button, the mini-program will get the data about

the user’s contacts in the background. If the host app (i.e.,

WeChat) has already obtained the contacts’ permission, the

mini-programs can obtain partial contact information without

the user’s awareness. After testing, we have confirmed that

WeChat mini-programs can use this method to obtain the

users’ contacts and successfully transmit the obtained data to

the mini-programs’ background process, whether in Android

or iOS, without the user’s authorization and the user’s aware-

ness. Attackers can take advantage of this vulnerability and

bind wx.searchContacts to an inductive button to entice users

to click. Sensitive data in the user’s address book may be

read and uploaded in the background, resulting in information

leakage.

C. Stealing Clipboard Information

Take the WeChat mini-programs as an example. During

the test, we write wx.getClipboardData in the onload event

in the JS code so that the clipboard content can be easily

obtained without the user’s awareness. Even if it is not written

in the onload event, binding this API to the button control

event can also trigger it. In the real world, mini-programs

can write some inductive slogans on the button to induce the

user to click and then obtain the user’s clipboard contents.

After a large number of tests, we have confirmed that many

host apps (e.g., WeChat, ByteDance, Baidu, QuickAPP) can

obtain user clipboard information and successfully transfer

the obtained data into the mini-programs in the background

without the user’s authorization and awareness. Suppose the

copied content is not destroyed after the user pastes it into an

application. In that case, the content can still be obtained when

the user opens a mini-program, thus causing the leakage of the

user’s sensitive information. For example, when a user copies

the name of a certain product, after opening a shopping mini-

program, it can read the user’s clipboard content and upload

the private information in the background. The developers of

this mini-program will know the user may want to buy this

product and push similar commodities or analyze the user’s

behavior to push advertisements precisely.

D. Responsible Disclosure

To ensure that the mini-programs’ mechanism of different

host apps had sufficient time to fix the vulnerabilities, we

contacted them individually about the vulnerabilities sev-

eral months before submitting this manuscript. This allowed

several different host apps to finish patching the reported

vulnerabilities. We reported the results of our investigation

to the Tencent Security Response Center as well as to CVE

(CVE-2021-33057, CVE-2021-40180).

VI. DISCUSSION

A. Seriousness of the Vulnerabilities

Some vulnerabilities look like bugs and are easy to be fixed

by the vendor. Take the disappearance of the setting page

(IV-B4) as an example. It is a bug; meanwhile, we also think it

is a serious vulnerability because it is a design flaw in the mini-

program’s framework, and all the mini-programs operated by

this host app will be affected. The mini-program users can do

nothing but watch the malicious apps steal the data.

B. Limitations and Future Works

We conducted a series of mini-programs’ permission tests

based on personal accounts. In other words, the tested APIs

are all for individuals. According to our statistics, the number

of APIs open to non-individual developers is 4.6% of the

number of the total APIs. This type of interface usually

includes obtaining the user’s mobile phone number, motion

data, etc. Different host apps have different attitudes towards

such interfaces. For example, the WeChat mini-programs allow

individual developers to obtain users’ motion data, while

in the Alipay mini-programs, this interface is only open to

corporate users. Generally, those interfaces that are only open

to enterprise users will be more strictly managed by host apps

since these can obtain more data. Therefore, it is very difficult

to examine the APIs used by enterprise accounts. In the future,

we will cooperate with enterprises to test and research these

APIs.

C. Mitigation Measures

Our empirical analysis aimed to draw people’s attention to

the neglected security issue of the improper use of sensitive

permissions in mini-programs. First, the lack of isolation

between mini-programs for some specific permissions like

reading/writing clipboard is one of the design flaws. Besides,

due to inheritance, the permissions of mini-programs are the

subset of the host App’s permissions. When the host App is

not able to manage the permission properly, the mini-program

may obtain more permissions than it needs. This violates

the principle of Least Privilege in the security area. We

call on the host app’s vendors to consider privacy protection

and follow the security principles when designing the mini-

programs’ APIs and access control framework. Users should

also increase their security awareness to protect their personal

information when using mini-programs, and should be vigilant

against mini-programs of unknown origin. Everyone should

not quickly authorize their private information to the mini-

programs to prevent it from being illegally collected and

leaked.

604



VII. RELATED WORK

There has not been much research relevant to mini-programs

in the current academic circles regarding the privacy issues

related to permissions. Lu et al. [33] propose their study on the

resource management in mini-program and reveal some high-

impact security flaws. Zhang et al. [25] research the identity

confusion problem in the mini-program ecosystems.

Since mini-programs are built and run on mature mobile

applications (such as WeChat, Alipay, etc.), there are a lot of

studies on security related to mobile application permissions

for us to learn from [34]–[37]. In this section, we introduce

them from the following two aspects.

A. Permission Management Concerns in Mobile Apps

Almomani et al. [38] demonstrated, discussed, and com-

pared the latest technologies in the field of Android permis-

sions, and conducted the latest research on Android permis-

sions, revealing that Android permissions face various security

issues. Fang et al. [39] investigate the arising issues in Android

security, including coarse granularity of permissions, incom-

petent permission administration, insufficient permission doc-

umentation, over-claim of permissions, permission escalation

attack, and TOCTOU (Time of Check to Time of Use) attack

and put forward several methods to further reduce Android

security risks. Reardon et al. [13] searched for sensitive data

being sent over the network for which the sending app did not

have permissions to access it by mechanisms to monitor the

application’s runtime behavior and network traffic. They found

that apps can circumvent the permission model and gain access

to protected data without user consent by using both covert and

side channels and determined how this unauthorized access

occurs. Mujahid et al. [40] implements a technique in a tool

called PERMLYZER, which automatically detects permission

issues from apps APK.

B. Inappropriate Permission Detection in Mobile Apps

In Android, the most common is the permission manage-

ment mechanism of Android [34], [35], [41], [42]. DroidNet

[12] is an Android permission control and recommendation

system, which is an Android permission control framework

based on crowdsourcing. It provides recommendations on

whether to accept or reject the permission requests based

on decisions from peer expert users, which can help users

implement low-risk resource access control for untrusted ap-

plications and protect users’ privacy. HybridGuard [43], a

framework based on the subject authority and fine-grained

policy execution for web mobile applications, can accurately

monitor all web codes to ensure the security of mobile

applications, in which an interception and policy code is

implemented in a single JavaScript file, and whether to in-

tercept them is determined by wrapping API about device

resource access and DOM operation and checking the policy.

M-Perm [11] is a detection tool that combines string analysis

and static analysis to identify normal, dangerous, and third-

party permission requests in applications to detect permission

abuse. Cusper [44] is a new modular design in the Android

permission model, which separates the management of system

permissions from custom permissions declared by untrusted

third-party applications. It introduces backward compatible

naming conventions for custom permissions to systematically

eliminate and prevent the loopholes of custom permissions.

The mainstream approach for enhancing the Android per-

mission mechanism is to identify over-declared permissions

requested by an app [45]–[48], and recommend appropriate

permissions for an app [49], [50]. TERMINATOR [16] pro-

vides a safe, reliable, yet non-disruptive approach to protect

mobile users against permission misuses. Liu et al. proposed a

Personalized Privacy Assistant (PPA) for mobile applications,

which can manage mobile permissions of mobile applications

and predict the privacy settings that users want by asking some

questions, and proposed a method to learn the privacy profile

of permission settings [14]. Bao et al. also proposes two novel

approaches to realize permission recommendations [51] .

VIII. CONCLUSION

The mini-program is a new mobile application format that

runs inside a mobile app. Although these mini-programs are

taking over the traditional mobile OS and have become the

way to do almost everything in China, there is little research

on these mini-programs, especially regarding their potential se-

curity and privacy issues. In this paper, we conducted a large-

scale analysis of mini-programs in different host apps for the

first time. We have conducted empirical research on 9 currently

popular host apps, revealing the security issues corresponding

to the 6 types of potential security vulnerabilities we have

discovered in the real world. We propose corresponding attack

methods to analyze these potential weaknesses to exploit the

discovered vulnerabilities. In addition, we also showed three

real attacks on the mini-program’s permissions to prove that

the revealed vulnerabilities may cause severe consequences in

real-world use. Following the practice of responsible disclo-

sure, we have also reported newly discovered vulnerabilities

to relevant security platforms, among which the more severe

vulnerabilities obtained CVE numbers. Lastly, we put forward

a series of suggestions for the future deployment of mini-

programs to protect users’ privacy.

REFERENCES

[1] “Mini program platforms 2021: Wechat vs. alibaba vs. baidu,” https:
//www.chinainternetwatch.com/30749/mini-program-platforms/.

[2] “Miniapp standardization white paper,” https://www.w3.org/TR/
mini-app-white-paper/.

[3] “Number of monthly active wechat users from 2nd quarter
2011 to 3rd quarter 2022,” https://www.statista.com/statistics/255778/
number-of-active-wechat-messenger-accounts/#statisticContainer.

[4] “Tiktok statistics – updated jan 2023,” https://wallaroomedia.com/blog/
social-media/tiktok-statistics/.

[5] “Number of monthly users of alipay mini pro-
grams in china from september 2020 to septem-
ber 2022,” https://www.statista.com/statistics/1359311/
china-number-of-alibaba-alipay-mini-program-monthly-users/.

[6] “Number of monthly active facebook users worldwide as of
3rd quarter 2022,” https://www.statista.com/statistics/264810/
number-of-monthly-active-facebook-users-worldwide/.

605



[7] D. Barrera, H. G. Kayacik, P. C. Van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th ACM
conference on Computer and communications security, 2010, pp. 73–84.

[8] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” IEEE security & privacy, vol. 7, no. 1, pp. 50–57, 2009.

[9] X. Ma, “App store killer? the storm of wechat mini programs swept
over the mobile app ecosystem,” Retrieved November, vol. 15, p. 2019,
2019.

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 217–
228.

[11] P. Chester, C. Jones, M. W. Mkaouer, and D. E. Krutz, “M-perm: A
lightweight detector for android permission gaps,” in 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). IEEE, 2017, pp. 217–218.

[12] B. Rashidi, C. Fung, A. Nguyen, T. Vu, and E. Bertino, “Android
user privacy preserving through crowdsourcing,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 3, pp. 773–787, 2017.

[13] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in 28th {USENIX}
Security Symposium ({USENIX} Security 19), 2019, pp. 603–620.

[14] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang,
N. Sadeh, Y. Agarwal, and A. Acquisti, “Follow my recommendations:
A personalized privacy assistant for mobile app permissions,” in Twelfth
Symposium on Usable Privacy and Security, 2016, pp. 27–41.

[15] I. Mohamed and D. Patel, “Android vs ios security: A compara-
tive study,” in 2015 12th International Conference on Information
Technology-New Generations. IEEE, 2015, pp. 725–730.

[16] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek, “A
temporal permission analysis and enforcement framework for android,”
in Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 846–857.

[17] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisger-
ber, “On demystifying the android application framework: Re-visiting
android permission specification analysis,” in 25th {USENIX} security
symposium ({USENIX} security 16), 2016, pp. 1101–1118.

[18] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: A field study on con-
textual integrity,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 499–514.

[19] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile os
updating,” in 2014 IEEE symposium on security and privacy. IEEE,
2014, pp. 393–408.

[20] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 224–238.

[21] G. Petracca, Y. Sun, A. Atamli-Reineh, P. D. McDaniel, J. Grossklags,
and T. Jaeger, “Entrust: Regulating sensor access by cooperating pro-
grams via delegation graphs.” in USENIX Security Symposium, 2019,
pp. 567–584.

[22] L. Hao, F. Wan, N. Ma, and Y. Wang, “Analysis of the development of
wechat mini program,” in Journal of Physics: Conference Series, vol.
1087, no. 6. IOP Publishing, 2018, p. 062040.

[23] “What is instant app (google android instant app)?” https://
searchmobilecomputing.techtarget.com/definition/instant-app.

[24] “Permissions on android,” https://developer.android.google.cn/guide/
topics/permissions/overview.

[25] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang., “Identity confusion in webview-based mobile
app-in-app ecosystems,” in In 31st USENIX Security Symposium, 2022,
pp. 1597–1613.

[26] “Number of monthly active qq users from 3rd quarter 2019
to 3rd quarter 2022,” https://www.statista.com/statistics/227352/
number-of-active-tencent-im-user-accounts-in-china/.

[27] “Number of monthly active users of popular short video apps in
china in november 2022,” https://www.statista.com/statistics/910633/
china-monthly-active-users-across-leading-short-video-apps/.

[28] “Baidu q3 2022 on ai, autonomous driving; baidu app mau up 5%,”
https://www.chinainternetwatch.com/31413/baidu-quarterly/.

[29] “The monthly active users of quick app,” https://twitter.com/Huawei
devs/status/1398270846481965063.

[30] “Top payment apps in china in 2021,” https://ecommercedb.com/news/
top-payment-apps-in-china-in-2021/3238.

[31] “Introduce of autonavi software,” https://en.wikipedia.org/wiki/
AutoNavi.

[32] “Tencent location service,” https://lbs.qq.com/service/webService/
webServiceGuide/webServiceGcoder.

[33] H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security, 2020, pp. 569–585.

[34] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and quali-
tative comparison of program analysis techniques for security assessment
of android software,” IEEE Transactions on Software Engineering,
vol. 43, no. 6, pp. 492–530, 2016.

[35] D. J. Tan, T.-W. Chua, and V. L. Thing, “Securing android: a survey,
taxonomy, and challenges,” ACM Computing Surveys (CSUR), vol. 47,
no. 4, pp. 1–45, 2015.

[36] M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis, and
J. Polakis, “Reaper: real-time app analysis for augmenting the android
permission system,” in Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, 2019, pp. 37–48.

[37] J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, “An android application
risk evaluation framework based on minimum permission set identifica-
tion,” Journal of Systems and Software, vol. 163, p. 110533, 2020.

[38] I. M. Almomani and A. Al Khayer, “A comprehensive analysis of the
android permissions system,” IEEE Access, vol. 8, pp. 216 671–216 688,
2020.

[39] Z. Fang, W. Han, and Y. Li, “Permission based android security: Issues
and countermeasures,” computers & security, vol. 43, pp. 205–218,
2014.

[40] S. Mujahid, R. Abdalkareem, and E. Shihab, “Studying permission
related issues in android wearable apps,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 345–356.

[41] E. Alepis and C. Patsakis, “Unravelling security issues of runtime
permissions in android,” Journal of Hardware and Systems Security,
vol. 3, no. 1, pp. 45–63, 2019.

[42] Y. Zhang, M. Yang, G. Gu, and H. Chen, “Rethinking permission
enforcement mechanism on mobile systems,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 10, pp. 2227–2240,
2016.

[43] P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar, “Hybrid-
guard: A principal-based permission and fine-grained policy enforcement
framework for web-based mobile applications,” in 2017 IEEE Security
and Privacy Workshops (SPW). IEEE, 2017, pp. 147–156.

[44] G. S. Tuncay, S. Demetriou, K. Ganju, and C. Gunter, “Resolving the
predicament of android custom permissions,” 2018.

[45] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th international
conference on software engineering, 2014, pp. 1025–1035.

[46] J. Wang and Q. Chen, “Aspg: Generating android semantic permissions,”
in 2014 IEEE 17th International Conference on Computational Science
and Engineering. IEEE, 2014, pp. 591–598.

[47] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
tocog: Measuring the description-to-permission fidelity in android ap-
plications,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 1354–1365.

[48] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “{WHYPER}:
Towards automating risk assessment of mobile applications,” in 22nd
{USENIX} Security Symposium ({USENIX} Security 13), 2013, pp.
527–542.

[49] K. Huang, J. Han, S. Chen, and Z. Feng, “A skewness-based framework
for mobile app permission recommendation and risk evaluation,” in
International Conference on Service-Oriented Computing. Springer,
2016, pp. 252–266.

[50] Z. Liu, X. Xia, D. Lo, and J. Grundy, “Automatic, highly accurate app
permission recommendation,” Automated Software Engineering, vol. 26,
no. 2, pp. 241–274, 2019.

[51] L. Bao, D. Lo, X. Xia, and S. Li, “Automated android application per-
mission recommendation,” Science China Information Sciences, vol. 60,
no. 9, pp. 1–17, 2017.

606


