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Abstract—In this paper, we introduce a novel and secure
solution to mitigate side-channel attacks to capture the PINs
like touchID and other credentials of touch-enabled devices.
Our approach can protect haptic feedback enabled devices from
potential direct observation techniques such as cameras and
motion sense techniques including such as accelerometers in
smart-watch. Both attacks use the concept of shoulder surfing
in social engineering and were published recently (CCS’14 and
CCS’15). Hand-held devices universally employ small vibration
motors as an inexpensive way to provide haptic feedback. The
strength of the haptic feedback depends on the brand and the
device manufacturer. They are usually strong enough to produce
sliding movement and make audible noises if the device is resting
on the top of a desk when the vibration motor turns. However,
when the device is held in the hand the vibration can only be
sensed by the holder; it is usually impossible or uncertain for an
observer to know when the vibration motor turns. Our proposed
solution uses the haptic feedback to inform the internal state
of the keypad to the user and takes advantage of the fact that
the effect of haptic feedback can be easily cloaked in such a way
that direct observation techniques and indirect sensing techniques
will fail. We develop an application on Android cell phones to
demonstrate it and invite users to test the code. Moreover, we use
real smart-watch to sense the vibration of Android cell phones.
Our experimental results show that our approach can mitigate
the probability of sensing a 4-digit or 6-digit PINs using smart-
watch to below practical value. Our approach also can mitigate
the probability of recognizing a 4-digit or 6-digit PINs using a
camera within 1 meter to below practical value because the user
does not need to move his or her hand during the internal states
to input different PINs.

Index Terms—haptic feedback; random keypad generator;
vibration sensor; touch-enabled devices; security

I. INTRODUCTION

Touch-enabled devices including mobile devices are ubiq-
uitously utilized in our daily life. However, they are also
attracting attention from attackers. Information leakage caused
by touched keys from attackers has been a topic of concern
for a long time. Currently, almost all systems involve a PIN or
password based identity access control before a user can ac-
cess requested resources. Therefore, protecting the credential
during user’s typing has become the core of any secure system.

Whether the researcher can defend against pattern recognition
based side channel attacks or not become a crucial problem.

A typical authentication process on today’s handheld de-
vices involves the entering of passwords using a keypad on a
touch screen. To enter the password, the user needs to know
what keys she needs to press. This almost always means the
user would find the location of the keys on the screen and
physically position her finger over the targeted key and press
down the finger. Thus, any person or camera happens to have
a view of the keypad, the finger, and the shoulder movement
can potentially see or record the key strokes and thus know
the password with high probability [1]. Indeed, attackers adopt
various tools such video, smart-phone [2]–[4], smart-watch
[1], sunglass, a teapot, and etc. to get user’s passwords. It
was reported that the user’s shirt could be used as a tool by
attackers to get passwords [5], [6].

We propose a solution based on “invisible” haptic feedback
to prevent the finger movement detection and acoustic based
detection by cameras and sensors. When a user presses a key
on the haptic feedback-enabled touch screen, the device will
produce a sequence of “invisible” haptic feedback to the user.
The way the keypad communicate to the user employs its
internal status of the keypad. The user would hold down the
finger steady and count the number of haptic feedback silently
in his or her head until he or she reaches the desired state. He
or she would then release the finger, and correct key (which
may or may not be the same as the actual key he or she
pressed) is registered as input. When the user presses the key,
the internal state is “neutral”. If the user releases the key now,
the keypad will register the exact key the user pressed. There
is no need for the user to be concerned with the danger of
shoulder surfing and other side-channel attacks. Otherwise, a
different key may be registered as input. Thus, if the user
holds down the key, then the internal state of the keypad will
start changing at a random pace. Furthermore, the keypad will
send a single pulse of haptic feedback to the user at every
change of the internal state. The number of internal states is
typically very small (3 or 4), and thus very easy for the user
to keep track in her head. If the user waits long enough, the
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internal state will be reset to neutral (indicated by a double
pulse of haptic feedback), and the same sequence of internal
state change will start all over again.

If the user releases the finger now, then the key registered
by the keypad may be different from the actual key pressed.
The registered key is a function of the pressed key and the
internal state. The registered key matches the pressed key if
and only if the internal state is neutral. The mapping of the
pressed key and internal state to the registered key will be
explained later.

Since the haptic feedback can only be sensed by the user,
and only the user knows the internal states of the keypad
and hence the registered input key. Moreover, the user will
not move his or her finger during the change of internal
state, through cameras and sensors on smart-watch, an at-
tacker cannot be sure the actual internal state at the time of
the release of the finger, and therefore will not be able to
know for certain what key the user intended to press. Thus,
the solution can defend against the attacks exploiting finger
movement detection and acoustic based detection by cameras
and sensors. These attacks are based on the knowledge of
finger movement and keyboard layout. They include the causal
shoulder surfing, sophisticated use of video recording and
image analysis to track the movement of a finger, sensing the
of carried smart-watch. Our experiment shows that our novel
solution is effective against such attacks.

Fig. 1. Demo Application

Our contributions are summarized as follows:
• We present a novel solution to prevent the side-channel

attacks to identify the PINs or passwords.
• To the best of our knowledge, we are the first group

who proposed to a promising new non-visual interaction

paradigm – haptic feedback based motor to solve the
problem of security.

• We develop an Android application prototype and test it.
Our scheme is effective and significant: (1) We get nearly

100% success rate in our users test; (2) Our solution is light-
weight and less expensive, in which only an already built-in
motor in a smart-phone is required; (3) Our solution can be
widely applied to protect the PINs and other credentials.

The remainder of this paper is organized as follows: In
Section II we describe the background and attack models. We
introduce our novel approach in Section III. In Section IV,
we analyze and calculate the performance. We show our real
experimental results and evaluate the solution in Section V.
We present related discussions in Section VI. In Section VII,
we discuss the related work, and we conclude the paper in
Section VIII.

II. THREAT MODEL

There are a lot of attacks based on touch-enabled devices.
According to the mechanism of attacks, we can classify these
attacks into two categories:
• Sensors based side-channel attacks. Sensors may be an

accelerometer, a microphone, and others. Attacks usually
use the sensors to detect a victim without his or her
knowledge. For instance, a smart-watch is used to attack
victim [7] when the smart-watch was controlled by the
attacker. An accelerometer in the smart-watch can offer
the exact coordinates of keys. An acoustic sensor can
record the sound of user’s PIN typing by a microphone
as well.

• Vision based side-channel attacks. Some researchers em-
ploy footage to record the track of movement. Although
attackers cannot see the specific keys, they can detect the
key through shadow [8], or the light [9], or the coordinates
[10], or other visible features of a key to calculate the real
key. According to [9], the success rate of detection is over
97% per character.
In this paper, we specifically focus on how to defend
against above new attacks.

III. OUR NOVEL APPROACH

The most innovative part of our solution is the hidden
internal state s of the keypad. When the user presses a key
pressedKey, the keypad registers targetKey as input. It
is important to note that pressedKey may not be the same
as targetKey. For example, the user may physically press
the key pressedKey=J when he or she really want to input
targetKey=G. Figure 1 illustrated our demo application. It
shows a keypad and internal states. Above the keypad, the
upper line is used for a user to see the internal states. The lower
line is used for debugging. In real and usable application, the
lower line will not be displayed.

The central theme of our solution is the fact that
targetKey is a function of pressedKey and the internal
state s:
targetKey = f (pressedKey, s).



In this paper, we propose the hidden internal state internal
∆i. If we denote the index of a key by idx(key), then:

idx(targetKey) = idx((pressedKey + ∆i) mod N),
where N is the number of keys.

The range of ∆i is 0, 1, 2, ..., L − 1; where L is the number
of internal states. A larger value of L provides better security
but may be cumbersome for the user. Our usability study and
experimental results suggest that L = 3 or L = 4 are right
choices. The interpretation of the number of haptic feedback
is explained with an example as follows.

A. Communication of the hidden internal state

Assume that the following keys are aligned in a row: Q, W,
E, R, T, Y, .... Each key is associated with an index. For the
purpose of this example, we will assume that the indexes are
i = 0, 1, 2, 3, 4, 5, ..., correspondingly. When the user presses
and holds down his or her finger on the key E: the index is
i = 2 and the internal counter is ∆i = 0.

Please refer to Fig.2 3 as we examine the different scenarios.
• If he or she releases key immediately, ∆i = 0. The keypad

will register the key i = 2 + ∆i = 0, hence E.
• If he or she continues to hold down the key for a duration

of T1, then the device will vibrate for a very brief moment
T2. The keypad now increments its internal counter: ∆i =

1. If he or she releases the finger now, the keypad will
register the key i = 2 + ∆i = 2 + 1 = 3, hence R.

• On the other hand, if he or she continues to hold down the
key for another duration of T1, then the device will vibrate
once for a very brief moment T2 again. The keypad now
increments its internal counter again: ∆i = 2. If he or she
releases the finger now, the keypad will register the key
i = 2 + ∆i = 2 + 2 = 4, hence T.

• On the other hand, if he or she continues to hold down the
key for another duration of T1, then the device will vibrate
once for a very brief moment T2 again. The keypad now
increments its internal counter again: ∆i = 3. If he or she
releases the finger now, the keypad will register the key
i = 2 + ∆i = 2 + 3 = 5, hence Y.

• On the other hand, if she continues to hold down the key
for another duration of T1, then the device will vibrate
twice for a very brief moment T3 again. This is a signal
that the keypad resets its internal counter: ∆i = 0. If he
or she releases the finger now, the keypad will register
the key i = 2 + ∆i = 2 + 0 = 2, hence E; the actual key
she pressed.

• Now the ∆i is reset to zero. If he or she continues to hold
down the key, then the change of the internal counter ∆i
repeat in the same manner as before.

B. Timing of Finger Release

By counting the pulses silently in his or her head, a user
can “know” the value of the hidden variable ∆i throughout
the duration of key-press. The variable ∆i has a small range
(typically 0, 1, 2, and 3) and reset itself with a twin pulse. If
a user forgets the count, he or she can start the counting again

Fig. 2. Graphs of ∆i and vibration vs hold-down-time

after a reset. Hence, it does not require much concentration
from the user.

It is clear that the biggest uncertainty arises if a user releases
the finger at almost the same time when a new pulse is about
to start. We propose that the user should release the finger
as soon as he or she “knows” the ∆i. This means if the user
knows that a single pulse is coming, he or she should release
the finger as soon she sense the rise of the pulse. Otherwise,
he or she should wait out until he or she senses a twin pulse
has just passed.

C. Further Obfuscation

If the durations T1, T2 and T3 are fixed, it is easy to calculate
∆i by noting the duration of a key press. In other words, there
is a perfect correlation of the value of ∆i and the duration of
a key-press. To make such calculations unrealizable, we need
to reduce the correlation as much as possible. Therefore, we
propose that the durations T1, T2 and T3 should be random.

To further obfuscate the effectiveness of vision based side
channel attacks, we suggest users to press the keypad and wait
out a random number of cycles before he or she releases the
keypads. The randomness of durations T1, T2 and T3, and the
randomness of “idling” cycles make the prediction of ∆i based
on the duration of key-press more difficult.

D. Recommended Usage

If there is no danger of shoulder surfing (no camera or
people around) and other side-channel attacks, the user should
use the keypad the way she would normally use: just press
and release the actual key (corresponding to ∆i = 0). On the



other hand, if he or she feels there is a need to obfuscate the
password, he or she should choose a key randomly offset-ed
from the target key, and hold down the key and wait out a
random number of cycles before he or she release the finger
for the right offset. This strategy is particularly useful if he
or she is chatting with someone who can see his or her finger
and keypad. In this case, he or she would just hold down the
key for as short as a few seconds or as long as several minutes
while he or she is engaged in a conversation.

It is worth to discuss the significance of the two choices
that the user has to make when he or she want to obfuscate
her input:
• Offset ∆i,
• Number of cycles to wait out.

To be most effective, the user should choose these two value
as random as humanly possible. It is also important to note
that the user should not purposely avoid ∆i = 0. It is important
to note that the user should try to wait out, at least, one cycle
if time permits.

E. Random Keyboard

Vision-based side channel attacks utilize the knowledge of a
finger movement and keyboard layout. They include the casual
shoulder surfing and sophisticated use of video recording and
image analysis to track the movement of a finger. Random
keyboard layout has been suggested by researchers as a way to
deter such attacks. It is clear that our solution can be enhanced
by the use of a random keyboard.

F. Other Variation

The central themes of our solution are based on the follow-
ing observations:
• The keypad maintains a hidden internal state,
• The internal state changes in a random manner,
• The internal state is communicated to the user via a

“hidden” channel (haptic feedback in our solution)
• The actual input is a function of the following: what

appeared to be input, the internal state
It is clear that our solution can be applied to a variety of

input methods. We are currently testing and evaluating various
variations.

IV. PERFORMANCE IN THEORY

A. Assumptions

We will now perform a mathematical analysis of the per-
formance of our solution.

Let L be the number of internal states, and targetKey =

f (pressedKey, s). We assume that, for fixed pressedKey,
the function f is injective on the variable s. In other words, for
a fixed pressedKey, each state s is guaranteed to produce a
different targetKey. We assume that the internal states are
hidden from an attacker; and that the user employs the solution
in such a way that the internal state becomes unpredictable at
the time of his or her finger releases (this will be the case if
the user holds down the key long enough).

Finally, we make the assumption on the attacker: the at-
tacker has perfect information of the pressedKey and the
mechanism of our solution.

B. Predictability of ∆i

We will assume that the random variables T1, T2 and T3
are independent. These variables control the duration of the
individual pulses. It is important to note that, in practice, these
variables must have definite positive minimum and maximum
values; otherwise it would be impossible for a human user to
sense the different states of the internal variables. We’ll denote
the minimum, maximum and the difference of Ti as follows:
min Ti, max Ti, and δTi = max Ti −min Ti.

Let t be the duration of holding down a key; then the
effectiveness of our solution depends on the variation of
∆i versus t. In other words, the effectiveness depends on
the predictability of ∆i. Since there are L internal states:
∆i = 0, 1, 2, . . . , L − 1; the predictability of ∆i is least if all
states have the same probability 1/L.

The probability of each internal state is predictable for a
very small t. Indeed if the random variable T1 has a definite
minimum min T1 > 0; then ∆i = 0 for 0 ≤ t < min T1.

The duration of the first cycle is LT1 + (L − 1)T2. The
duration of one subsequent cycle is LT1 + (L − 1)T2 + T3.
Let T (N) be the total duration of the first N ≥ 1 cycles,
then T (N)min = NL min T1 + N(L − 1) min T2 + (N − 1) min T3,
T (N)max = NL max T1+N(L−1) max T2+(N−1) max T3. Hence
δT (N) = T (N)max−T (N)min = NLδT1+N(L−1)δT2+(N−1)δT3.

It is clear that the internal state ∆i become more and more
unpredictable as δT (N) = NLδT1 + N(L − 1)δT2 + (N − 1)δT3
become larger and larger. This can be achieved by increasing
any of the following variables: N, L, δT1, δT2, and δT3.

C. Asymptotic Probability of ∆i

As the user holds down the keys longer and longer, it
becomes increasingly difficult to guess the value ∆i. In the
limiting case, the asymptotic probability of guessing the cor-

rect ∆i is
1
L

. If there are w characters in the password, the

asymptotic probability of guessing the correct password is
1

Lw .
Thus, if L = 3 and w = 4, then the asymptotic probability

of guessing the correct password is
1
34 = 1.23%. As another

example, if L = 4 and w = 6, then the asymptotic probability

of guessing the correct password is
1
46 = 0.02%. This is indeed

a very low probability.
In practice, several factors will affect the probability:
1. The attacker may not have perfect information about the

position of the finger and the layout of the keypad. This is the
case if the attacker has to rely on a video recording from a
distance or indirect detection method such as using the built-in
accelerator of a smart watch). Such perfect information will
increase the effectiveness of our solution.

2. The human user tends to avoid releasing the key at
“neutral” internal state (∆i = 0), thinking that if all target key
is different from a pressed key, the attacker will have a harder



time to guess the correct answer. This argument, of course,
is fallacious. The best strategy relies on total randomness.
Therefore, the unconscious tendency of avoiding ∆i = 0 will
decrease the effectiveness of our solution.

3. As we recall: idx(targetKey) = idx((pressedKey +

∆i) mod N), and ∆i = g(t), where t is the duration of holding
down the key; and g is a certain random function, see the
top part of the graph in page 3. Hence idx(targetKey) =

g′(idx(pressedKey), t), where g′ is another random func-
tion.

There is a correlation between the targetKey and the
pressedKey and t, the correlation is high: (1) when t is
small; and (2) if the variance of the randomness of T1, T2, T3
is small.

Therefore, if the user is impatient when entering the pass-
word, he or she may release the finger at the very first or
second pulse. In that case, the probability of guessing ∆i is
significantly higher.

V. PERFORMANCES EVALUATION

In this section, we show the performances of security and
summarize the users’ experience.

A. Demo Application Development:

The password demo is an Android application developed
using Android Studio. The basic API for the vibrator is includ-
ed in API level 1, which is the very original API published
in 2008. It is safe to assume almost all current Android
devices come with a built-in vibrator. To obtain an instance of
the system vibrator, we call getSystemService() with
VIBRATOR_SERVICE as the argument. There are many API
related to the controlling of the vibration. The following ones
are of particular importance to our application development.
public abstract boolean hasVibrator ()

Check whether the hardware has a vibrator.
public abstract void cancel () Turn the vibra-

tor off. This method requires the caller to hold the permission
VIBRATE.
public void vibrate (long[] pattern, int

repeat) Vibrate with a given pattern.
Pass in an array of integers that are the durations for which

to turn on or off the vibrator in milliseconds. The first value
indicates the number of milliseconds to wait before turning the
vibrator on. The next value indicates the number of millisec-
onds for which to keep the vibrator on before turning it off.
Subsequent values alternate between durations in milliseconds
to turn the vibrator off or to turn the vibrator on. To cause the
pattern to repeat, pass the index into the pattern array at which
to start the repeat, or -1 to disable repeating. This method
requires the caller to hold the permission VIBRATE.

The API does not provide any method to control the
intensity of vibration. We can, however, control the pattern of
vibration. Thus by inserting many very briefs of silence within
a pulse of vibration, we can control the apparent intensity of
the pulse. For example, if the duration of the pulse is 200
milliseconds, we can divide the pulse into twenty cycles of

TABLE I
AVERAGE CONSUMPTION OF TIME OF COMPARE

Digits
Average consumption of time (Unit:s)

normal 2-state 3-state 4-state 5-state

4 1.8 2.8 3.5 4.8 5.8

5 2.1 3.6 4.6 5.6 6.5

6 2.6 4.3 5.1 6.2 7.3

10 milliseconds each. And within each cycle, we can turn on
the vibrator for six milliseconds and turn off the vibrator for
four milliseconds. The apparent intensity of the cycle is then
6/10*100% = 60%. Thus, the whole cycle will appear to be
60% of the full intensity.

B. Usability Test

• User is given a list of pre-generated random passwords
(each consists of 6 characters).

• User looks at the password secretly (away from the
attacker) and enters it openly (no obstruction or hiding
the fingers)

• An attacker has a full unobstructed view of the user’s
finger and keypad.

• After each user’s inputting the password, the attacker
write down what he or she thinks the password is on
a piece of paper.

• At the end of the test, we tally the number of attacker’s
correct guesses.

We have a consumption of time of compare between the
regular keypad and our method. We invited 30 users to test our
demo applications. We employed 4-digit, 5-digit and 6-digit
pass-codes. And we designed four type deferent internal states
applications, 2-state, 3-state, 4-state, and 5-state, respectively.
In the Table I, which contains three type length digits. The
data displays average cost of normal method and our scheme.
We can see that our scheme is one third times slower than the
usual method. However, since our method is an “invisible” and
having one-way function, it is not likely detected by vicious
tricks, included side channel attacks via radio.

C. User Test and Experimental Results

We invited 30 random smartphone users to test our demo
applications and then tried our best to guess their 4-digit, 5-
digit, and 6-digit PINs twice. As we can see from the TABLE
II and TABLE III, we can see that the more internal states, the
lower the percentage of successful attacks. Besides, we also
tested the usability of the corresponding number of internal
states. As we can see in TABLE IV, when the number of
internal states is 5, a user failed to type the correct PINs once
during 50 tests. When the number of internal states is less
than 5, no user failed to type the correct PINs once during
50 tests. Thus, we choose the number of internal states to 3
or 4. We simulated the attacks using an Android phone and a
smart-watch with an accelerometer. The tester carries a smart-
watch on his or her right wrist and an Android phone on his
or her left wrist. The tester typed the PINs and the computer



TABLE II
ACCURACY OF THE SYSTEM WITH 4-DIGIT PINS

Number of Number Correct Percentage of
internal states of trials Guesses successful attack

2 30 1 3.3%

3 30 0 0%

4 30 0 0.0%

5 30 0 0.0%

TABLE III
ACCURACY OF THE SYSTEM WITH 6-DIGIT PINS

Number of Number Correct Percentage of
internal states of trials Guesses successful attack

2 30 0 0%

3 30 0 0%

4 30 0 0.0%

5 30 0 0.0%

connected the smart-watch recorded and read the information
of the accelerometer. During the internal state, as shown in
Fig. 3, all the deltas used in paper [1] equals to zero. This
means such data are not suitable for the schemes the paper [1]
used, and the smart-watch cannot get any information about
the tester’s input.

For the attack in paper [9], the success guessing rate of
one-character (or one-digit) is over 97% while the success
rate of recognizing 4-character passcodes is greater than 90%.
In [10], the attack breaks an average of over 50% of the PINs
on the first attempt and an average of over 85% of the PINs in
ten attempts. Thanks to randomized and hidden internal states,
our work can render their attacks unsuccessful because fewer
motions needed to type a PINs or other credential.

Fig. 3. One testing process

D. Discussion on a robotic robbery

Touch-based authentication is a primary conventional attack
these days. Serwadda et al. [11] present two LEGO-driven
robotic attacks on a population statistical driven attack and a
user-tailored attack. As we are known, population statistical
driven attack is based on patterns gleaned from a large
population of users, and user-tailored attack is launched based
on samples which get from the victim, while our solution is

TABLE IV
USABILITY OF THE DEMO APP WITH DIFFERENT INTERNAL STATES

Number of Number Number of failure
internal states of success trials of failure

2 50 0

3 50 0

4 50 0

5 49 1

based on “invisible” haptic feedback. A user presses a key
on the haptic feedback-enabled touch-screen, and the device
will produce a sequence of “hidden” haptic feedback to the
user. This is the way the keypad communicate to the user its
internal status of the keyboard. Whatever getting the position
or pressure by a LEGO robot that is trained on how to swipe
on the touch screen is no use for our method.

E. More discussion on the smart-watch based attack

Our experiment shows that smart-watch can not detect
any haptic vibration coming from a hand-held device when
a user presses his or her finger on the device. We have
also demonstrated that even if the API does not support
direct manipulation of the intensity of vibration of the haptic
feedback, we can still control it programmatically. Therefore,
we are confident that we can cloak the haptic vibration from
detection by current smart-watch technology. It has been
demonstrated [1] that a smart-watch can be used to detect
the wearer’s finger movement, and hence deduce the key
the wearer is pressing. But without additional information
on the haptic feedback, the smart-watch has no advantages
over any direct observation technique, because it has the same
uncertainty about the internal state ∆i. Thus, a smart-watch
wearer, employing our solution properly, can be certain that
the probability of a smart-watch sensing a four-digit PIN is
well below a practical value, namely: 100/34 = 1.23% for four
internal states, or 100/35 = 0.41% for five internal states. It is
clear that, if necessary, we can further reduce the probability
by using a random keyboard, which cannot be sensed with a
smart-watch.

Therefore, although our scheme is slower than the usual
method, it is significant “invisible” method, and it is a mean-
ingful method because it is only used to privacy password. We
can use acoustic mask (such as playing music) to prevent the
information leakage of the motor in cell phone.

VI. RELATED WORK

Security is an everlasting topic, especially in the mobile era.
Orozco et al. [12] suggested reasonable practicality of imple-
menting haptic-based biometric systems, and that it was an av-
enue worth pursuing. Kuber et al. [13] carried out a feasibility
study of tactile-based authentication. After that, some tactile
authentication schemes employed multi-modal interfaces [14],
haptic wheel [15], and audio [16]–[18] etc. Fingerprint-based
personal identification technology was used in smart-phone
for several years. However, some researchers showed that



fingerprint authentication does not have a strong security level
in [19] and [20] because experimental results showed that
the fake fingerprints fabricated by latex or body doubles are
the most difficult to discriminate. Additionally, a smart-phone
with fingerprint authentication is much more expensive than a
standard one. A fingerprint-based audio authentication scheme
using frequency domain statistical characteristic was proposed
[21]. However, FRANCESCO et al. [22] declared that they
tested their approach on 154 individuals, achieving a false
alarm rate of about 4 percent and an impostor pass rate of
less than 0.01 percent. Therefore, characteristic authentication
based on features analysis has not led to techniques providing
an acceptable level of accuracy. Chang et al. [23] proposed a
new graphical-based password KDA system for touch screen
handheld mobile devices to displace normal keyboard. Rao
et al. [24] proposed two authentication schemes that support
keyboard as well as graphical mouse-based input that map
password characters to other regions of the password space.
It has more than 6.9% errors. Our solution is different from
all the schemes. Our scheme is effective and significant: (1)
We get nearly 100% success rate in our users test; (2) Our
solution is light weight and less expensive, in which only an
already built-in motor in a smart-phone is required; (3) Our
solution can be widely applied to protect the PINs and other
credentials.

VII. CONCLUSION

The attacks targets on smart devices will arise due to the
popularity of them. Especially, it is very hard to defend against
the attacks in paper [1], [11] and [25]. Our paper shows
a potentially widely applied method to protect the PINs or
credentials. It is reasonable to assume that when a user presses
her finger on a hand-held device, vibrations from the device
are transmitted through her muscle and bones to another part
of the body. It is therefore theoretically possible for a wearable
device to detect such haptic feedback when the user presses
her finger on a vibrating hand-held device.
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