
SHIPHER: A New Family of Light-weight Block
Ciphers based on Dynamic Operators

Xiali Hei
Department of Computer and Information Sciences

Delaware State University

Dover, DE 19901, USA

Email: xhei@temple.edu

Binheng Song
Graduate School at Shenzhen

Tsinghua University

Shenzhen, 518055, China

Email: bsong@tsinghua.edu.cn

Caijin Ling
School of EIE

Heyuan Polytechnic

Heyuan, Guangdong, 517000, China

Email: ling8983@gmail.com

Abstract—In this paper, we describe a family of block ci-
phers named SHIPHER. We present a symmetric encryption
framework based on a cryptographic hash function and dynamic
operators controlled by small random numbers. This dynamic
operator mixes operations from different algebraic groups like
IDEA [1]. However, unlike IDEA and extended IDEA ([2], [3]),
modular addition is the only calculation in this framework and
this makes SHIPHER highly efficient. The round function was
chosen to provide confusion and diffusion to facilitate hardware
implementations. This framework can provide families of secure,
flexible, and variable-key-length block ciphers. Any block size
can be achieved. We have extensively investigated our encryption
framework. We can easily control the computational cost by
selecting block size, implementation method, and a hash function.
Also, this framework offers excellent performance and it is
flexible and generic enough to admit a variety of implementations
on different dynamic operators. In this paper, we provide one
implementation, show its performance, and discuss possible
extensions of similar dynamic operators.

Index Terms—block cipher; symmetric cipher; customized
operator; light-weight; embedding devices

I. INTRODUCTION
Many symmetric encryption schemes such as Advanced

Encryption Standard (AES) [9] and Blowfish [5]. Most of

them are based on Feistel Networks or substitution, while our

scheme proposed in this paper is inspired by a customized

nonlinear operators, which is a randomized combination of

group operations. Our scheme accepts any block size and we

name it as SHIPHER, which is different from our previous

work [4] using SubSet-Sum problems.
The design goal of SHIPHER is to provide another nov-

el light-weight block cipher family. The security level of

SHIPHER depends on the block size, time t′, and the key

K. So it is also a key-dependent symmetric block cipher.

However, it is different from the idea using extra key bits to

get strong s-boxes in [6]. (See more comparisons with other

ciphers in Section 8).
SHIPHER can be applied in lightweight applications (e.g.

8-bit microcontroller) as well as heavyweight applications. In

this paper, we first present the framework to generate the

SHIPHER families. Then a novel symmetric block cipher

implementation is proposed herein. In the proposed cipher,

we choose the block size to be 256, while the length of a

secret key varies.
The dynamic operator mixes operations from different al-

gebraic groups and is controlled by small random positive

integers with constrains. The required confusion is achieved

by successively using a fast cryptographic hash function, two

different group operations on pairs of varible-length subblocks

(or chunks) and the cipher structure was chosen to provide the

necessary diffusion. Our cipher resists differential attacks, lin-

ear cryptanalysis, Boomerang attacks, and related-key attacks

due to its high randomness. Its cipher structure was chosen
to facilitate hardware implementations, unlike IDEA [1] and
extended IDEA [2], it does not have complex operators such
as modular multiplication.

We also extensively analyze and test the avalanche effect. At

last we show other extension methods to this framework, and

conduct the performance evaluation using SHIPHER-library.

Our contributions are summarized as follows:

• A symmetric encryption framework based on customized

nonlinear operators is proposed. This framework is very

flexible and accepts any block size and various implemen-

tations. It is suitable for both lightweight and heavyweight

applications.

• We present a complete implementation of 256-bit block

cipher and present potential extensions to this block

cipher.

The remainder of this paper is organized as follows: In Sec-

tion 2 we describe the framework model to design SHIPHER.

In Section 3 we present one detailed implementation and sev-

eral other implementation methods based on this framework.

We analyze the encryption model and test the avalanche effect

in Section 4. Thorough security analysis is given in Section

5. We evaluate our implementation in Section 6. In Section 7,

we discuss extension to this encryption framework. In Section

8, we review the related work, and we conclude the paper and

discuss the future work in Section 9.

II. CONSTRUCTION FRAMEWORK

A. Definition of dynamic operator
A dynamic operator � is defined by randomly combining

several finite group operations together, such as addition

modular over 2l, multiplication over Zp \ {0}, addition over

GF (2n), etc. Let G = (S,
⊕

) be a group.
⊕

l means a

group operation on a l-bit subblock, which may be any group

operation, and & is a concatenation operation.

Definition 1: Suppose p is the number of subblock (or

chunks) in a block, and li is the length of a subblock (or

IEEE ICC 2017 Communication and Information Systems Security Symposium

978-1-4673-8999-0/17/$31.00 ©2017 IEEE

2

chunk), then �=
⊕

l0
&
⊕′

l1
& · &⊕′′

li
& · &⊕′′′

lp
, where

⊕
,

⊕′
,
⊕′′

, and
⊕′′′

are finite group operations.

For example, when
⊕

is �l, an addition of integers modulo

2l where the l-bit subblock is treated as the usual radix-two

representation of an integer. Then �=�l0& �l1 & · & �li & ·
&�lp .

Suppose p = 2, l0 = 3 and l1 = 1, � = �3&�1 means that

adding the first 3 digits (a �3 operation), and followed by a �1

operation. Thus, (0011)�(1011) = (001+101)mod 23 &(1+
1)mod 21 = 1100.

An dynamic operator � is determined by block size w,

number of chunk p, length li of each chuck, and different

group operations on each chunk. Through combining different

group operations with &, � provides nonlinearity. When w and

p are the same, a slightly change in li will make the � change.

B. A note of a dynamic operator �
We should notice that for a dynamic operator �,

1) If �1 and �2 are different, then

(n1 �1 n2) �2 n3 = n1 �1 (n2 �2 n3) is generally not true.

For example, for a 5-bit chunk, assume �1 is �1&�2&�2,

while �2 is �2&�3. n1 = 10111, n2 = 11001 and n3 =
01110;

Then n1 �1 n2 = (1)(01)(11) �1 (1)(10)(01) = 01100
(n1 �1 n2) �2 n3 = (01)(100) �2 (01)(110) = 10010.

n2 �2 n3 = (11)(001) �2 (01)(110) = 00111
n1 �1 (n2 �2 n3) = (1)(01)(11) �1 (0)(01)(11) = 11010.

We can see that a pair of different �s is not distributive.

C. Confusion
Confusion (see ([7], [8])) means that the ciphertext depends

on the plaintext and key in a complicated and involved

way. The confusion is achieved by mixing different group

operations.

The two operations are incompatible in the sense that:

1. No pair of the two operations satisfies a distributive law.

For example,

a �1 (b �2 c) �= (a �1 b) �2 (a �1 c) (II-1)

2. No pair of the 2 operations satisfies an associative law.

For example,

a �1 (b �2 c) �= (a �1 b) �2 c. (II-2)

3. The two group operations in a � are combined by a &,

which inhibits isotopisms as shown in literature [1]. Thus,

using any bijections on the operands, it is impossible to realize

any one of the two operations by another operation.

D. Round encryption
In the encryption, w is the block size, p is the number

of subblock (or chunks) in a block,
∑p

i=1 d
(s)
i = w, we use

�s=
⊕

d
(s)
0

&·&⊕′
d
(s)
i

&·&⊕′′′
d
(s)
p−1

, where s is the round label,

�s is the dynamic operator we will use in each round.

This cipher relies on two factors: (1) shared key K; (2)

time t′ to generate small random integers, which is transmitted

through out-of-band channel, such as text message, email,

and personal call. These small random integers are used to

determine the �s.

Suppose that m is a plaintext, and Hk0 is the hash of

shared key K, which is a 256-bit binary digit when we use

RC4-256 as the hash function. Hk1 , ..., Hkn are generated by

Hk0 , where the n is determined by security strength. σs is a

permutation generated by {Hk1 , ..., Hkn}.

Definition 2: We define a mapping F1, such that

{Hk1 , ..., Hkn}=F1(K, t′). F1 is used to generate

{Hk1 , ..., Hkn} from Hk0 , which is a w-bit binary digit. F1

has different implementations.

Definition 3: We define a mapping F2, such that

σ=F2(K, t′). F2 is used to generate a permutation from

{Hk1 , ..., Hkn}, which are n w-bit binary digits. F2 has

different implementations as well.

Definition 4: We define a mapping F3, such that

{d0, ..., di, ..., dp} = F3(K, t′, p),
∑p

i=1 di = w, where w is

the block size, time t′ is a seed of a Pseudo Random Number

Generator PRNG(), p is the number of subblock (or chunks)

in a block. F3 also has different implementations.

We use the following round function to encrypt a plaintext

m. e0 = m, Hk0 and Hk1 are seen as n0 and n1, permutation

σs is dependent on key. In the s + 1 round encryption, Hks

can be seen as ns;

The round function is:

e1 = σ1(e0) �0 n0;
e2 = σ2(e1) �1 n1;
.
es+1 = σs(es) �s ns.

(II-3)

The dynamic operator �s is defined in 2.1 and it has various

implementations.

E. Decryption scheme
The encryption and decryption processes are similar. The

differences between the encryption and decryption algorithm

are: (1) Do the inverse operation of �s; (2) Use the corre-

sponding inverse of the permutation σs.

The decryption formula is as follows,

es = σ−1
s (es+1 �

−1
s ns); (II-4)

where, �−1
s is the inverse of �s, σ−1

s is the inverse of σs.

The complexity of decryption depends on the complexity of

solving the following problem:

Problem 1: Given e2 and e0, find (n0, n1, �0), �1) such that

e2 = σ−1
2 (n1 �1 (n0 �0 e0)).

The number of the small random numbers used and the

number of rounds affects the security level. The larger of them,

the more secure the encryption scheme. We will give detailed

analysis in Section 4 and 5.

III. IMPLEMENTATION

To construct a dynamic operator, we chop a block into w/2h

2h-bit chunks, where h is a small integer such as 3 and 4.

The lengths of chunks d
(s)
i are related to an order-dependent

(h − 1)−compositions of an integer 2h. To simplify the

implementation and implement it in an 8-bit microcontroller,

IEEE ICC 2017 Communication and Information Systems Security Symposium

3

Fig. 1. A 2-round encryption diagraph

we restrict the d
(s)
i within [2, 2h=8] when h = 3. Also, we

choose �l to replace the finite group operation
⊕

l in Section

2.1. �l is an addition of integers modulo 2l where the l-bit

subblock is treated as the usual radix-two representation of

an integer. & is a concatenation operation in this paper. Then

�=�l0&�l1 & ·&�li & ·&�lp .

For example, p = 2, l0 = 3 and l1 = 1, � = �3&�1

means that adding the first 3 digits (a �3 operation), and

followed by a �1 operation. Thus, (0011) � (1011) = (001 +
101)mod 23 &(1 + 1)mod 21 = 1100.

A. Encryption diagram
The encryption process consists of a cryptographic hash

function, and z-round similar computations according to the

block size followed by an output transformation. Averagely,

one round of computations can make at least one and a half

bit change in the ciphertext. Then a 256-bit block cipher needs

12 rounds of computation in average to make sure that 1-

bit change in the plaintext will make 128-bit change in the

ciphertext. We can choose z=16 in our design when the block

size is 256. σs is a permutation (P1 and P2 represent σ1

and σ2 in Fig.1) used in kth round and it has different

implementations and no invariant.

In the encryption, w is the block size, p is the number

of subblock (or chunks) in a block,
∑p

i=1 d
(s)
i = w, we

use �s=�
d
(s)
1
& · & �

d
(s)
i

& · &�
d
(s)
p

, where s is the round

label, �s is the dynamic operator we will use in each round.

The complete first two rounds are depicted in Fig. 1. In

Fig. 1, Hk0 = Hash(K), (Hk0 , ∗Hk1 , ..., Hk15)=F1(Hk0),
e1 = σ1(e0)�0Hk0 ; e2 = σ2(e0)�1Hk1 , ci is a small random

number within [0, 64). We will see how to decide the range

of it later. f is a mapping between ci to d
(s)
i .

B. Decryption scheme
The encryption and decryption processes are similar. The

differences between the encryption and decryption algorithm

are: (1) Do the modular substraction first instead of the

modular addition; (2) Use the corresponding inverse of the

permutation. Figure 2 shows the two-round decryption process.

Pn and Pn−2 are permutations and P−1
n and P−1

n−2 are the

corresponding inverse permutation of them. In Fig.2, n = 16,

en−1 = P−1
n (en �

−1
15 Hk15); en−2 = P−1

n−2(en−1 �
−1
14 Hk14),

Fig. 2. A decryption diagram

C. Hash function and an implementation of F1

The hash module in Fig. 1 is a 256-bit cryptographic hash

function. We choose RC4-256 in our implementation. After the

hash function, an any-length key is converted to Hk0 , which

is a 256 bit binary integer. Then we choose w/2h − 1 small

primes, which are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, They

last one is dependent on w and h. When w = 256, h = 4,

w/2h − 1 = 15. The last prime is 47. These small primes are

used as follows:

Hk1 is a 2-bit right circular shift of Hk0 ;

Hk2 is a 3-bit right circular shift of Hk0 ; ... Hk15 is a 47-bit

right circular shift of Hk0 .

Hk0 , Hk1 , ..., Hk15 are used to generate the permutation σs

and work as n0, n1, ..., n15 in the encryption process.

D. An implementation of F3: The generation of p, d(s)i , and
�s

Suppose w is the block size, p is the number of subblock (or

chunks) in a block,
∑p−1

r=0 d
(s)
i = w, all the d

(s)
i are determined

by small random integers, then �s=�
d
(s)
0
& �

d
(s)
1

& · & �
d
(s)
i

& ·&�
d
(s)
p

, where s is the round label. We use the following

method to determine the p and d
(s)
i :

A w-bit block was chopped into w/2h 2h-bit chunks. p =
(h−1)∗w/2h. Let P ′([2, 2h], h−1; 2h) denote the number of

order-dependent compositions of integer 2h with at most h−1
parts, each of size within [2, 2h]. Assume that the total number

of such compositions is P ′([2, 2h], h−1; 2h) = y, then we use

time t′ as a seed to generate w/2h small integers cg within

[0, y − 1]. If cg = v, then we retrieve the (v + 1)th ordered

partition in the y partitions. We set [d
(s)
gp , d

(s)
gp+1, ..., d

(s)
gp+p] to

the vth ordered partition, where s is the round label.

For example, when h = 3, w/2h = 32, h − 1 = 2, p =
(h− 1) ∗w/2h = 64, 2h = 8. Recall that we have a constrain

that each of size should be within [2, 2h]. The satisfied order-

dependent compositions of 8 are [3, 5], [5, 3], [4, 4], [2, 6],

and [6, 2] and y = 5. Thus, random small integers cg is within

[0, 4]. If ci = 0, then we retrieve the 1st ordered partition [3,

5]. We will set d
(s)
2i = 3, d

(s)
2i+1 = 5.

In our implementation, we choose h = 4, w/2h = 16,

h− 1 = 3, p = (h− 1) ∗w/2h = 48, 24 = 16. Recall that we

have a constrain that each of size should be within [2, 16].
The satisfied order-dependent compositions of 16 are [6, 5, 5],

IEEE ICC 2017 Communication and Information Systems Security Symposium

4

[5, 6, 5], [5, 5, 6], [6, 6, 4], [4, 6, 6], [4, 6, 6], [7, 5, 4], [7, 4,

5], [5, 4, 7], [5, 7, 4], [4, 5, 7], [4, 7, 5], [7, 6, 3], [7, 3, 6],

[6, 7, 3], [6, 3, 7], [3, 6, 7], [3, 7, 6], [7, 7, 2], [2, 7, 7], [7, 2,

7], [8, 4, 4], [4, 8, 4], [4, 4, 8], [8, 5, 3], [8, 3, 5], [3, 8, 5],

[3, 5, 8], [5, 8, 3], [5, 3, 8], [8, 6, 2], [8, 2, 6], [6, 2, 8], [6, 8,

2], [2, 6, 8], [2, 8, 6], [9, 4, 3], [9, 3, 4], [4, 9, 3], [4, 3, 9],

[3, 4, 9], [3, 9, 4], [9, 5, 2], [9, 2, 5], [5, 9, 2], [5, 2, 9], [2, 5,

9], [2, 9, 5], [10, 3, 3], [3, 3, 10], [3, 10, 3], [10, 4, 2], [10, 2,

4], [4, 2, 10], [4, 10, 2], [2, 4, 10], [2, 10, 4], [11, 3, 2], [11,

2, 3], [2, 11, 3], [2, 3, 11], [3, 11, 2], [3, 2, 11], [12, 2, 2], [2,

2, 12], [2, 12, 2] and y = 66. For simplification, we delete the

compositions [12, 2, 2] and [2, 2, 12], thus, small integers cg
is within [0, 63]. If cg = 2, then we retrieve the 3rd ordered

partition [5, 5, 6]. We will set d
(s)
3i = 5, d

(s)
3i+1 = 5, d

(s)
3i+2 = 6,

where s is the round label. Once the d
(s)
i is determined, the

�s of each round is determined.

E. An implementation of F2: Key-dependent bit-level permu-
tation generation algorithm

In our implementation, w = 256. We chopped Hk0 , Hk1 ,

..., Hk15
into 32 8-bit chunks. Let fr represents rth chunks.

If f1 = 20, then the digit on the 1st position will be moved to

20th position after the permutation. If fr is a number repeated,

then we ignore it and continue to test fr+1 until we get 256

different integers or test all fr. If we cannot find 256 different

numbers, then we fill the remaining position with an ordered

sequence of those numbers not shown up within [0, 255].

In the first round, the following p[q] = u is the permutation

σ1 we used, that means the qth bit will move to uth bit after

the permutation. We can see there are no invariant positions.

For the (s + 1)th round, the integers we used to generate

σs are Hks , Hks+1 , ..., Hk15 , Hk0 , Hks−1 .

p[0]=220, p[1]=6, p[2]=7, p[3]=14, p[4]=22, p[5]=33,

p[6]=35, p[7]=36, p[8]=37, p[9]=38, p[10]=39, p[11]=51,

p[12]=54, p[13]=62, p[14]=64, p[15]=65, p[16]=66,

p[17]=67, p[18]=68, p[19]=69, p[20]=70, p[21]=71,

p[22]=72, p[23]=73, p[24]=74, p[25]=75, p[26]=76, p[27]=77,

p[28]=78, p[29]=79, p[30]=82, p[31]=86, p[32]=87, p[33]=90,

p[34]=94, p[35]=95, p[36]=96, p[37]=97, p[38]=98, p[39]=99,

p[40]=100, p[41]=101, p[42]=102, p[43]=103, p[44]=104,

p[45]=105, p[46]=106, p[47]=107, p[48]=108, p[49]=109,

p[50]=110, p[51]=111, p[52]=114, p[53]=115, p[54]=116,

p[55]=117, p[56]=118, p[57]=119, p[58]=121, p[59]=122,

p[60]=125, p[61]=126, p[62]=127, p[63]=131, p[64]=132,

p[65]=134, p[66]=139, [67]=142, p[68]=143, p[69]=150,

p[70]=151, p[71]=164, p[72]=166, p[73]=167, p[74]=170,

p[75]=193, p[76]=194, p[77]=195, p[78]=196, p[79]=197,

p[80]=198, p[81]=199, p[82]=202, p[83]=203, p[84]=204,

p[85]=206, p[86]=211, p[87]=212, p[88]=213, p[89]=214,

p[90]=215, p[91]=223, p[92]=226, p[93]=227, p[94]=228,

p[95]=229, p[96]=230, p[97]=231, p[98]=234, p[99]=236,

p[100]=237, p[101]=241, p[102]=242, p[103]=243,

p[104]=246, p[105]=254, p[106]=255, p[107]=239,

p[108]=172, p[109]=135, p[110]=210, p[111]=133,

p[112]=252, p[113]=225, p[114]=12, p[115]=191,

p[116]=250, p[117]=92, p[118]=163, p[119]=44, p[120]=190,

p[121]=201, p[122]=200, p[123]=244, p[124]=189,

p[125]=124, p[126]=141, p[127]=123, p[128]=209,

p[129]=45, p[130]=149, p[131]=219, p[132]=42, p[133]=113,

p[134]=129, p[135]=224, p[136]=253, p[137]=192,

p[138]=235, p[139]=138, p[140]=40, p[141]=176, p[142]=15,

p[143]=46, p[144]=89, p[145]=8, p[146]=165, p[147]=63,

p[148]=84, p[149]=9, p[150]=188, p[151]=182, p[152]=137,

p[153]=218, p[154]=140, p[155]=232, p[156]=145,

p[157]=238, p[158]=245, p[159]=83, p[160]=174, p[161]=4,

p[162]=11, p[163]=251, p[164]=50, p[165]=61, p[166]=146,

p[167]=53, p[168]=13, p[169]=55, p[170]=34, p[171]=5,

p[172]=10, p[173]=216, p[174]=171, p[175]=161, p[176]=16,

p[177]=162, p[178]=205, p[179]=233, p[180]=3, p[181]=159,

p[182]=155, p[183]=0, p[184]=179, p[185]=32, p[186]=112,

p[187]=80, p[188]=175, p[189]=23, p[190]=169, p[191]=26,

p[192]=222, p[193]=221, p[194]=148, p[195]=187,

p[196]=208, p[197]=2, p[198]=43, p[199]=147, p[200]=41,

p[201]=157, p[202]=31, p[203]=217, p[204]=91, p[205]=240,

p[206]=60, p[207]=57, p[208]=183, p[209]=48, p[210]=177,

p[211]=168, p[212]=81, p[213]=130, p[214]=158, p[215]=47,

p[216]=85, p[217]=25, p[218]=207, p[219]=88, p[220]=154,

p[221]=249, p[222]=59, p[223]=28, p[224]=181, p[225]=248,

p[226]=49, p[227]=136, p[228]=128, p[229]=160, p[230]=17,

p[231]=30, p[232]=18, p[233]=173, p[234]=19, p[235]=21,

p[236]=52, p[237]=20, p[238]=93, p[239]=152, p[240]=27,

p[241]=156, p[242]=29, p[243]=24, p[244]=120, p[245]=153,

p[246]=178, p[247]=58, p[248]=56, p[249]=186, p[250]=180,

p[251]=247, p[252]=184, p[253]=1, p[254]=185, p[255]=144.

F. Encryption and decryption
Time t′ and K are used together as a credential to encrypt

and decrypt a block. We transmit t′ through an out-of-band

channel such as text, email or personal call. We use the

formula (2-3) and (2-4) to compute the cipher text and plain

text.

IV. THEORETICAL ANALYSIS AND EXPERIMENTS

A. Diffusion: avalanche effect
The diffusion requirement on a cipher is that each plaintext

bit should affect every ciphertext bit and each key bit should

influence every cipher bit (see ([7], [8])). Diffusion is provided

by the transformation called the addition modulo 2l, key-

dependent bit-level permutation σs, and concatenation &.
1) Avalanche effect test: Instead of providing ful-

l avalanche, SHIPHER makes two weaker guarantees that

together are almost as effective:

• A change to any bit of the input will on average change

half the bits of the last 256 bits of the output

• A change to any bit of the last 256 bits of the input will

on average change half the bits of the output

We conducted 100 times to test the avalanche effect using

one bit change in plaintext. The result is shown in Table 1

when h = 4. When h = 4, the average of d
(s)
i is 5, 12-round

encryption is enough for our avalanche requirement. When

h = 3, 16-round encryption is better because the average of

d
(s)
i is 4.

IEEE ICC 2017 Communication and Information Systems Security Symposium

5

TABLE I
AVERAGE AVALANCHE EFFECT RESULTS WHEN h = 4

Round Bits

1 3

2 11

3 32

4 51

5 63

6 79

7 95

8 121

9 129

10 137

11 143

12 157

13 145

14 149

15 154

16 145

Fig. 3. The effect of a �l operation

2) Key sensitive test:: We omitted the key sensitive test

because what we use is H(K) instead of Key. The avalanche

effect of the cryptographic hash function H() guarantees the

key sensitivity of SHIPHER.
3) Theoretical analysis of avalanche effect: Theorem 1:

Assume n is a binary integer with arbitrary length, then

averagely there are two different digits between n+ 1 and n.

The probability of the last digit of them is 1; the probability

of the second last digit of them is 1/2; followed by 1/4, 1/8,

..., 1/2i.
The proof is trivial.

Theorem 2: After a binary integer with length less than k
incrementing by 1, there are averagely 2−2k−1 bits changed.

Theorem 3 If the ith bits of n1 and n2 are different, the

ith bit needs to do a �l operation, then for all n3, n1 � n3

and n2 �n3 are the same except the first i bits in the specified

subblock with length l as in figure 3.

V. SECURITY ANALYSIS

A. Brute-force attacks and algebraic attacks
Let P ′([2, 2h], h − 1; 2h) denote the number of order-

dependent compositions of integer 2h with at most h−1 parts,

each of size within [2, 2h]. During each round, the number of

possible dynamic operators is P ′([2, 2h], h− 1; 2h)w/2h . The

possible dynamic operators is (P ′([2, 2h], h − 1; 2h)w/2h)z

after z-round encryption. When w = 256, z = 16, h = 4,

p = 48, P ′([2, 2h], h − 1; 2h)w/2h=6616, (P ′([2, 2h], h −
1; 2h)w/2h)z = 6616∗12 = 66256. For simplification, we

choose 64 instead of 66. The number of possible dynamic

operators is 64256. It is very hard to conduct the brute-force

attacks. Similarly, it is also resistant to algebraic attacks, which

tries to find an algebraic expression from input (plain text) to

output (cipher text).

When w = 256, z = 16, h = 3, p = 64, P ′([2, 2h], h −
1; 2h)w/2h=532, (P ′([2, 2h], h−1; 2h)w/2h)z = 532∗16 = 5512.

It is also resistant to the brute-force attacks and algebraic

attacks.

B. Linear and differential attacks
Linear and differential attacks rely on the known structure

of encryption scheme. For key-dependent ciphers, both attacks

are inefficient because the attacker does not know the details

of �. Thus, it is also resistant to other attacks related to

differential attacks such as Boomerang attacks [13], statistical

saturation attack [14].

C. Related-key attacks
After a key getting through a cryptographic hash function

such as RC4-256 or SHA2-256, even one-bit change in the

key will cause a huge change in SHIPHER. Thus, SHIPHER

is resistant to relate-key attacks [20].

D. Side channel attacks
Most ciphers are vulnerable to side channel attacks such

as a timing attack [15] in which the attacker attempts to

compromise a cryptosystem by analyzing the time taken to ex-

ecute cryptographic algorithms. SHIPHER has this weakness

as other ciphers, however, it can mitigate this attack because it

is key-dependent and uses time as the second secret to generate

100-200 small random integers. The randomness lowers the

risk to timing attacks.

E. Other attacks
It it not clear whether our cipher provide key-dependent

message security [19] now because there is no existing testing

methodology for this property. We believe our cipher is

resistant to the key-dependent attacks [26] because the key

was hashed by RC4-256 or SHA2-256 in this cipher.

F. Special cases of plain text and cipher text
If the plain text is 0x0 or 0xFF...F, the permutation turns

out useless in the first round. This case will not generate weak

encryption blocks. We verified this.

VI. PERFORMANCE ANALYSIS
There are many lightweight block ciphers such as SIMON

and SPECK [29], AES [9], KLEIN [11], and PRESENT [27].

We have restricted our comparisons exclusively to AES. Com-

paring with the above block ciphers, the algebraic expression

of our scheme is simple and straightforward. And the block

size and the key length of our scheme is more flexible. Also,

the users can choose different implementations according to

their security strength requirement.

We implement SHIPHER in C language and attach the

encryption and decryption codes in the Appendix. The mea-

surements were taken on a personal computer with a 64-bit,

2.66 Ghz Intel(R) Core (TM) 2 Quad CPU Q8400. We now

provide some information on the performance achieved by the

SHIPHER-toolkit.

SHIPHER-enc and SHIPHER-dec run in a predictable

amount of time based on the length of the key and the

IEEE ICC 2017 Communication and Information Systems Security Symposium

6

TABLE II
PERFORMANCE COMPARISONS WITH OTHER LIGHT-WEIGHT CIPHERS

Algorithm Key

length

Block

size

RAM ROM Block pro-

cessing

(bit) (bit) (byte) (byte) speed (ms)

AES 256 256 14028.8 38563.84 2860

SHIPHER any 256 19251 42782 2738

number of rounds. The performance of them depends on

the selected hash function and random number generation

algorithm. Short private keys are as secure as long private
keys while maintaining reasonable running times. It is as fast

as AES-256 and slower than KLEIN-96 and PRESENT-80.

Table 2 shows our results.

VII. EXTENSION

Our block cipher family use the cryptographic hash value

of key and small random integers to construct the dynamic

operators. It is a key-dependent encryption framework. A

cryptosystem designer can have a different encryption scheme

after changing the cryptographic hash function and the dy-

namic operators. This encryption framework admits a variety

of implementations on random number generator.

There are several ways to extend this scheme: (1) Add other

finite group operations such as multiplication over Zp \ {0},

addition over GF (2n), etc; (2) Interleave these group opera-

tions with the dynamic operator we proposed in this paper; (3)

Make the permutation more uniformly distribution over [1, n].
We will test these schemes one by one and compare them in

the future.

VIII. RELATED WORK

We mention lightweight block ciphers such as SIMON and

SPECK [29], AES [9], KLEIN [11], and PRESENT [27] in

last section. Consequently, we don’t consider other interest-

ing lightweight stream ciphers like HUMMINGBIRD-2 [28],

GRAIN [30], KATAN [10], TRIVIUM [31], and SALSA20

[32].

Our cipher is a key-dependent block cipher. There are

similar key-dependent ciphers such as a modification of Hill

cipher using a key dependent permutation [16], in which the

key matrix is 384 bits, while our cipher accepts any-length

key. Key dependent block cipher SAFER [22] uses log45 and

45x arithmetic operators. Lucifer [24] is a key dependent block

cipher which essentially uses 16-round Feistel network, also on

128-bit blocks and 128-bit keys. Cipher ICE [23] is a Feistel

network with a block size of 64 bits, which also uses key-

dependent bit permutation in the round function as in our

design. It round function is different from our design.

Literature [17] proposed five key-dependent s-box using a

matrix, which is different from our scheme. Literature [18]

proposed a key-dependent s-box for AES using a permutation

of all possible 256 8-bit elements of GF (28). Literature [25]

proposed a DNA based key-dependent ShiftRows transfor-

mation approach for AES. Another key dependent S-boxes

based on 2D logistic map and 2D cross map was proposed in

literature [21]. SHIPHER is different from all of them because

it does not use S-boxes and the chunk length varies while the

length of S-boxes is fixed in other block ciphers.

IX. CONCLUSIONS AND FUTURE WORK

We created a symmetric block cipher framework based

on the design concept of a customized operator –“mixing

2 different group operations and random number generation

operations”– to achieve the required confusion and diffusion.

Confusion is achieved by arranging the operations in a way

that no pair of successive operations are of the same type

and by the fact that operations of different types are bit-

level. The diffusion can be achieved using 16 different bit-

level key-dependent permutations. Encryption and decryption

are essentially the same process with different customized

operators. Since some implementation of SHIPHER uses of

an 8-bit-less regular modular addition structure, the SHIPHER

can be implemented efficiently in both memory-restrained

hardware (e. g. microcontroller) and software. The security of

the proposed cipher needs further intensive investigation. We

hereby invite interested partied to attack this proposed cipher

and will be grateful ro receive the results of any such attacks.

In the future, it would be interesting to consider these new

encryption families as encryption schemes for big data and

disk section encryption because it is highly efficient.

REFERENCES

[1] X. Lai and J. L. Massey, “A Proposal for a New Block Encryption
Standard”, EUROCRYPT 1990, pp. 389 - 404, 1990.

[2] S. Su, S. Lü, and D. Dong, “A 128-bit block cipher based on three group
arithmetics”, http://eprint.iacr.org/2014/704.pdf.

[3] S. Patil, “An enhancement in international data encryption algorithm for
increasing security”, Intl. J. of Application or Innovation in Engineering
& Management, vol.3, issue 8, pp. 64 - 70, 2014.

[4] X Hei, B Song, “SHipher: Families of Block Ciphers based on SubSet-
Sum Problem”, IACR Cryptology ePrint Archive 103, 2014.

[5] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,
“Twofish: A 128-Bit Block Cipher”, https://www.schneier.com/paper-
twofish-paper.pdf.

[6] S. Harris and C. Adams, “Key-dependent S-Box Manipulations”, in: S.
Tavares and H. Meijer (Eds.): SAC’98, LNCS vol. 1556, pp. 15 - 26,
1999.

[7] C. E. Shannon, “Communication Theory of Secrecy Systems”, B. S. T.
J., Vol. 28, pp. 656 - 715, Oct. 1949.

[8] J. L. Massey, “An Introduction to Contemporary Cryptology”, Proc. IEEE,
Vol. 76, No. 5, pp. 533 - 549, May 1988.

[9] J. Daemen and V. Rijmen, “The design of Rijndeal”, Springer, Berlin,
2002.

[10] C. D. Cannière, o. Dunkelman, and M. Knežević, “KATAN and KTAN-
TAN - a family of small and efficient hardware-oriented block ciphers”,
in CHES 2009, Lecture Notes in Computer Science, no. 5747, pp. 272 -
288, Springer-Verlag, 2009.

[11] Z. Gong, S. Nikova, and Y. W. Law, “KLEIN: a new family of
lightweight block ciphers”, in RFIDsec ’11 Workshop Proceedings,
Cryptology and Information Security Series, no. 6, pp. 1 - 18, IOS Press,
2011.

[12] A. F. Webster and S. E. Tavares, “On the design of s-boxes”, in Advances
in Cryptology: Proc. of CRYPTO’85, Springer-Verlag, Berlin, pp. 523 -
534, 1986.

[13] D. Wagner, “The Boomerang Attack”, presented at 6th International
Workshop on Fast Software Encryption (FSE’99), Springer-Verlag, pp.
156 - 170, Rome, 1999.

[14] B. Collard and F.-X. Standaert, “A Statistical Saturation Attack against
the Block Cipher PRESENT”, in: Topics in Cryptology - CT-RSA 2009,
vol. 5473 of LNCS, pp. 195 - 210, 2009.

[15] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”, in Proc. of CRYPTO’96, Springer-
Verlag, pp. 104 - 113, 1996.

IEEE ICC 2017 Communication and Information Systems Security Symposium

7

[16] V. U. K. Sastry, N. R. Shankar, and S. D. Bhavani, “a large block cipher
involving key dependent permutation, interlacing and iteration”, Bulgarian
academy of sciences - Cybernetics and information technologies, vol. 13,
no.3, pp. 50 - 63, 2013.

[17] S. S. M. Aldabbagh, I. F. T. Shaikhli, and M. R. Zaba, “Key-dependent
s-box in lightweight block ciphers”, J. of Theoretical and Applied
Information Technology, vol. 62, no. 2, pp. 554 - 559, April 2014.

[18] A. Fahmy, M. Shaarawy, K. El-Hadad, G. Salama, and K. Hassanain,
“A proposal for a key-dependent AES”, in Proc. of 3rd International
Conference: Sceiences of Electronic, Technologies of Information and
Telecommunications, Tunisia, March 27 - 31, 2005.

[19] B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai, “Bounded key-dependent
message security”, in: Advances in Cryptology C EUROCRYPT 2010,
pp. 423 - 444, 2010.

[20] F. Böhl, G. T. Davis, and D. Hofheinz, “Encryption schemes secure
under related-key and key-depedent message attacks”, in: Public-Key
Cryptography C PKC 2014, vol. 8383 of LNCS, pp. 483 - 500, 2014.

[21] F. J. Lumal, H. S. Hilal, and A. Ekhlas, “New Dynamical Key Dependent
S-Box based on chaotic maps”, in: IOSR J. of Computer Engineering
(IOSR-JCE), vol. 17, issue 4, pp. 91 - 101, 2015.

[22] J. L. Massey, “SAFER K-64: A Byte-Oriented Block-Ciphering Algo-
rithm”, in Proc of Conference Fast Software Encryption, pp. 1 - 17, 1993.

[23] M. Kwan, “The Design of the ICE Encryption Algorithm”, in Proc of
Conference Fast Software Encryption, pp. 69 C 82, 1997.

[24] A. Sorkin, “LUCIFER: a cryptographic algorithm”, Cryptologia, vol. 8,
no. 1, pp. 22 C 35, 1984.

[25] A. H. Al-Wattar, R. Mahmod, Z. A. Zukarnain3, and N. I. Udzir4, “A
new DNA based appoach of generating key-depedent shiftrows transfor-
mation”, arXiv:1502.03544 [cs.CR].

[26] X. Sun and X. Lai, “The key-dependent attack on block ciphers”, In:
Advances in Cryptology C ASIACRYPT 2009, vol. 5912 of LNCS, pp.
19 - 36, 2009.

[27] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M.J.B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher”, in CHES 2007, Lecture Notes in Computer
Science, no. 4727, pp. 450 - 66, Springer-Verlag, 2007.

[28] D. Engels, M. Saarinen, and E. Smith, “The Hummingbird-2 lightweight
authenticated encryption algorithm”, in Cryptology ePrint Archive, Report
2011/126, 2011.

[29] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK Families of Lightweight Block
Ciphers”, in Cryptology ePrint Archive, Report 2013/404, 2013.

[30] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain Family
of Stream Ciphers”, in New Stream Cipher DesignsłThe eSTREAM
Finalists, Lecture Notes in Compter Science, no. 4986, pp. 179 - 190,
Springer-Verlag, 2008.

[31] C. D. Canniere and B. Preneel, “TRIVIUM Specifications”, in ECRYPT
Stream Cipher Project Report 2005/030, 2005.

[32] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers”, in New Stream
Cipher DesignsłThe eSTREAM Finalists, Lecture Notes in Compter
Science, no. 4986, pp. 84 - 97, Springer-Verlag, 2008.

APPENDIX A: PROOF OF BIT INDEPENDENCE CRITERION

The bit independence criterion (BIC) states that bits j and k of
output should change independently when any single input bit i is
inverted, for all i, j and k [12].

Theorem 4: Our scheme satisfies BIC.

1) Suppose A and B have the same length n and (n − 1) same
binary digits.

2) � is an operator, its distribution of length of each chunk
(subblock) is preset or can be calculated from all the possible
partitions.

3) σ is a random permutation.
4) xi is a n-bit binary number with digits random uniformly

distributed in [0, 1].

Theorem 5: Assume A(i) = xi−1 � σ(A(i−1)), B(i) = xi−1 �
σ(B(i−1)), where A0 = A, and B0 = B, then the 0 and 1 of A(i)

and B(i) (i ≥ 1) are uniformly distributed.
Proof: 1 The sum of any number and a number with digits

uniformly distributed in {0, 1} is with digits uniformly distributed in
{0, 1}.

2 The concatenation of several numbers with digits uniformly
distributed in {0, 1} is with digits uniformly distributed in {0, 1}.

Theorem 6: Assume the probability of A(i) and B(i) have the
same bits is pi, then the relationships between pi+1 and pi are as
follows:

1) pi < pi+1 < 1/2, if pi < 1/2
2) pi > pi+1 > 1/2, if pi > 1/2
3) pi → 1/2, i→∞
Theorem 6 guarantees that the probabilities of 0 and 1 in a number

at last are 1/2 whatever the original probabilities are.
Theorem 7: For all different i, j, k, then

P (A
(t)

[j] = B
(t)

[j] , A
(t)

[k] = A
(t)

[k]‖A(t)

[i] = A
(t)

[i])→ 1/4 (IX-5)

P (A
(t)

[j] �= B
(t)

[j] , A
(t)

[k] �= A
(t)

[k]‖A(t)

[i] = A
(t)

[i])→ 1/4

.

.

.

(IX-6)

According to Theorem 6, we only need to prove that the proba-
bilities of 0 and 1 at any two positions are irrelative.

That means, we only need to prove that

P (A
(t)

[j] = B
(t)

[j] |A(t)

[i] = A
(t)

[i])→ 1/2. (IX-7)

Assume that P (A
(t)

[j] = B
(t)

[j] |A(t)

[i] = A
(t)

[i]) = qi,j,t, that means when

t is large enough, P (A
(t)

[j] = B
(t)

[j] , A
(t)

[i] = A
(t)

[i]) = 1/2qi,j,t. Let the

i′, j′ are the positions of i, j after permutation.

Then P (A
(t+1)

[i′] = B
(t+1)

[i′] , A
(t+1)

[j′] = B
(t+1)

[j′]) can be calculated
as in the proof of Theorem 6.

We can also prove that: (1) If i′, j′ are in a chunk, then the
maximum decreases and the minimum increases; (2) If i′, j′ are not
in a chunk, the probabilities will approach 1/4 due to the uniformly
distribution.

Proof :
Suppose m bits of A(i) and B(i) are the same, and the other

n −m bits are different. Also the indices (positions) of the m bits
are uniformly distributed. After operation �i, the number of the same
bits in A(i+1) and B(i+1) can be calculated by the following rule:

We select a �l operator in a �i to do the analysis: 1) The
probability of the 0th bit is the same is pi, after the �l operation,
this probability is the same;

2) The probability of the 0th bit is different is 1− pi, after the �l

operation, this probability is the same; however, it affects the previous
bit due to a carrier with the probability of (1− pi)/2.

3) The probability of the tth (0 < t < l) bit does not change is
pi, assume the the probability of carrier is 1 at (t− 1)th bit is αt−1,
then the probability of At and Bt stay the same is as follows:

Ti = pi(1− αt−1) + (1− pi)αt−1

The probability of there is a carrier is as follows:
Si = 1/2piαt−1 + 1/2(1− pi)(1− αt−1) ≤ 1/2
4) In a summary,

Ti = pi + (1− 2pi)αt−1=

⎧
⎨

⎩

> pi, pi < 1/2 ;
< pi, pi > 1/2 ;
= pi, pi = 1/2 .

If there is one chunk (subblock) with the length longer than 1,
then Theorem 2 is true. Since any di is greater than 1, then Theorem
2 is true. We can simulate the contraction speed on a computer as
well. Table 1 shows the statistical results about the diffusion in our
experiments.

IEEE ICC 2017 Communication and Information Systems Security Symposium

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

