
Energy-Aware Real-time Scheduling on
Heterogeneous Multi-Processor

Gang Wang, Wenming Li, Xiali Hei
CSE Department, University of Connecticut, Storrs, CT 06269

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190
CSIT Department, Frostburg State University, Frostburg, MD 21532

g.wang.china86@gmail.com wanggang@ict.ac.cn

Abstract—Heterogeneous Multi-Processor has been steadily
gaining importance because of its potential energy efficiency
compared to homogeneous multi-processor architectures. Many
challenges for scheduling algorithms on heterogeneous multi-
process are created during the shift from homogeneous multi-
processor to heterogeneous architectures, especially for real-time
applications . In this paper, we introduce an optimal algorithm,
using energy-aware real-time scheduling, for multiple tasks on
heterogeneous multi-core processors. We first propose an energy
modelling from both dynamic and static energy perspectives,
considering the parameters both of software and hardware levels.
After that we propose a real-time scheduling policy of Optimal
Job to a Fast Processor First (OJFPF) using the parameter of
energy achieved from energy modelling, the length of tasks as
well as the local priority to assign the priority to each task. Our
simulation results show that OJFPF algorithm using the energy
modelling significantly reduce the overall energy consumption
and improve the performance.

I. INTRODUCTION

Due to the increase in transistor budgets enabled by Moore’s
law, multi-core processing architectures are now being in-
creasingly used in embedded systems with the real-time con-
straints, as the result the methods for real-time scheduling
have been gaining significant importance. Conventional multi-
core processor consists of the identical cores, which the cores
in processor are symmetric. Besides the symmetric multi-
core processors, homogeneous and heterogeneous multi-core
processors also gain in popularity, whose motivations are
driven by using cores geared to perform specific tasks well
and cheap. An alternative design approach for multi-core
processors, aimed for low-power and high performance, is to
implement heterogeneous cores on a processor which provide
a promising solution for power-efficient computing [1] [2][3].

The real-time community has recognized the trends of
substantially using heterogeneous multi-core processors and
provides solutions for this trends. However, when modelling
power and energy models, it makes, in most cases, the simpli-
fying assumptions, limiting the applicability of the presented
solutions. There exists too many common assumptions in liter-
ature, such as the energy consumption of different applications
only related to a function of execution time rather than the
task characteristics, the scheduling algorithms only consider-
ing the time-stamp of tasks. To provide a better scheduling
for the tasks, it should not only consider the software-level
parameters, such as execution time, but also utilize the other

parameters of executing tasks, such as the characteristics of
memory accessing as well as the requirements of deadline and
critical regions.

To schedule the multi-task assignments in heterogeneous
multi-core processors, there exists a larger number of algo-
rithms proposed to deal with the schedulability of these multi-
task assignments. Priority-based real-time multi-processor
scheduling approaches are state-of-the-art broadly used. A
scheduler of real-time system assigns a fixed priority to all
the tasks and then schedules them to execute on one or more
processor(s). In the uniprocessor, several optimal scheduling
algorithms exist to schedule the tasks in simply ways, such
as Deadline-Monotonic(DM) algorithm [4], Earliest Deadline
First(EDF) scheduling [5] as well as Least Laxity First(LLF)
scheduling [6]. However, these scheduling methods are not the
optimal algorithms for executing the multi-task assignments on
heterogeneous multi-core processors.

Traditional algorithms for scheduling the tasks aim to reduce
the power consumption of the system by assigning the tasks
to their favourite processors, usually ignoring other factors,
such as the deadlines of tasks and the uses of critical regions.
The managements of the tasks scheduling depend on the
properties of the tasks as well as the characteristics of pro-
cessors. Muhammad and Stefan [7] proposed an energy-aware
partitioning method to map the tasks onto a heterogeneous
multi-core platform using the Least Loss Energy Density
Algorithm(LLED) and the sleep states. Although Muhammad
and Stefan’s method achieved the effectiveness of reducing
energy, however, their method is complex, having a large
computations to assign the tasks, as well as only from the
energy-aware aspect to consider the scheduling. Jason and
Bo [1] proposed a scheduling approach that maps the programs
to the most appropriate core, based on the program phases.
Their approach achieves a good experimental result only in
the power model of energy delay product, without considering
other factors. Robert and Marko [8] presented a optimal fixed
priority scheduling with deferred pre-emption to determine
both the priority orderings of tasks and the lengths of their
final non-pre-emption regions. Their algorithm is optimal
for fixed priority scheduling and assumes that there exists
a schedulable combination. Nagesh et.al [9] evaluated two
scheduling algorithms, longest job to a fast processor first
and critical job to a fast processor first separately. However,

978-1-4799-8428-2/15/$31.00 ©2015 IEEE

the authors only consider one parameter for each scheduling
algorithm to evaluate their experimental results.

Above mentioned scheduling approaches and algorithms
mainly consider one or limited parameter(s) to design a real-
time scheduling on multi-core processors taking energy-aware
into account. However, it should consider and utilize several
significant parameters together to design an optimal scheduling
algorithm. In this paper, we introduce an optimal algorithm
for energy-aware real-time scheduling on heterogeneous multi-
core processors. We first propose a energy modelling from
both dynamic and static energy perspectives, considering the
parameters both from software and hardware levels. After that
we propose a real-time scheduling policy of Optimal Job to
a Fast Processor First (OJFPF) using parameters of energy
achieved from energy modelling, the length of tasks as well
as local priority to assign the priority to each task.

The remainder of this paper is organised as follows. Sec-
tion II proposes the energy model to evaluate the energy
consumption. Section III describes the real-time scheduling
algorithm of OJFPF. Section IV shows our evaluation method-
ology and experimental results. Section V concludes this
paper.

II. ENERGY MODELLING

This paper studies the priority-based scheduling of a set
of sporadic tasks (or taskset) on the heterogeneous multi-
processor. The heterogeneous processors achieve significant
improvements both in performance and energy consumptions.
Here we first propose a model to evaluate the energy con-
sumptions, then followed by the scheduling policy of optimal
job to a fast processor first(OJFPF).

Modelling energy for the real-time scheduling is a challeng-
ing task. It needs to consider the processes designed over the
time span of more than a decade. To model energy, it should
exploit the variability in demand as well as the characteristics
of the input computational capacities, both within a given
thread and across threads. The variations in computational
activity are often repetitive because of loop-oriented execution
semantics [10]. Energy depends not only on the computational
activities, but also on the scheduling policy used on the single
or multiple processor(s). Here we propose an energy modelling
framework to account for these factors together.

The energy model used in state-of-the-art usually considers
two different parts: dynamic energy and static energy. Assum-
ing, indeed, all processors execute the same instruction set,
however, utilize different resources and achieve different per-
formance and energy efficiency on the same task. One of the
major tasks of operating system is to map the tasks to different
processors, attempting to meet the pre-defined objective. The
processors in the heterogeneous multi-processor should pro-
vide a wide and spaced range of the complexity/performance
design space to cover the requirements of application ex-
ecution characteristic and system priority instruction used.
With these requirements, it should consider how to choose
the processors to minimize the energy consumptions. Due to
typical programs with the different execution characteristics of

instructions, the best processor during one phase may not be
the best one for the next phase. It needs to full considerations
to minimize the switches among processors in the overall
perspectives.

Dynamic energy consumption usually relates to the fre-
quency and instruction sets, and static energy consumption is
often considered as a constant factor related with the physical
aspects of the processors. For the overall energy consumption,
it assumes that execution time of an application is the only
factor to determine the energy consumption. However, even
two tasks with the identical execution time, it may consume
significantly different energy due to both the characteristics of
instructions, different instructions executing on different parts
of CPU, and the number of cache misses involved. In real-
time scheduling level, the static energy consumption is not
only related with the physical aspects, but also highly bounded
up with the time slices of the sleep states. It should further
define a more refined and accurate energy consumption model
to take full advantages of the sleep states’ characteristics of
the processor.

This paper assumes that the frequency, or speed, per pro-
cessor is firmed, which takes advantages of the computer
architectures of Globally Asynchronous Locally Synchronous
(GALS) [11] architectures. Similarly, this paper also assumes
that each processor has the firm, maybe different for different
processors, sleep states which are the states of low power
consumption.

From the view of the hardware performance, several key
hardware performance parameters are related to the energy
consumption closely. We identify five hardware-type parame-
ters as the key parameters to evaluate the energy consumption,
which are Performance, Instructions, Cache, TLB, Branches.
The parameter of Performance mainly relates to the Cycles
of application, and Instructions, Branches relate to the type
and number of different instructions of application, however,
Cache, TLB are mainly bounded up with the memory issues,
such as the number of memory accesses and memory misses.
Usually, memory issues take an important part in the these
parameters. We treat the execution time of applications and
the number of sleep states of each processor as the software
performance parameters in this paper. Table I shows the
parameters that affect the energy modelling.

TABLE I
PARAMETERS RELATED WITH ENERGY MODELLING

Hardware Software
Performance

Excution Time
Instructions
Cache

Sleep StatesTLB
Branches

Fig. 1 shows the conceptual structures of a hierarchical
energy consumption modelling to generate energy orders. The
energy orders will be used as a factor to design the scheduling
algorithm later.

Fig. 1. Energy Modelling

The preference of the task to a certain processor should not
only be set with respect to the energy consumption, meaning
that the most favourite processor for a task is the one where
its energy consumption is minimal, otherwise, it may cause
the unpredicted and/or unintended results. It should consider
other issues, such as the deadlines of the task and the time
duration in the critical area.

III. OPTIMAL JOB TO A FAST PROCESSOR FIRST (OJFPF)

In the previous section, we illustrated that the energy
consumption plays an important role to assign the Jobs/Tasks
to processors, however, the energy modelling is not the only
factor to determine a good operating system scheduler for
the real-time scheduling algorithm. It should consist of other
factors for a good one. We propose a real-time scheduling,
called Optimal Job to a Fast Processor First (OJFPF), which
also bases on the assigned priority to schedule the tasks on
processors. In this section, we pose other three key parameters
relating to the assignments of priorities under OJFPF. We then
derive a tractable algorithm using these parameters . To make
it more sensible, the terms of job and task have the same
meanings in this paper, both which can be either the threads
or processes.

A. Length of Tasks

The length of a task, commonly called execution time, is
one factor of OJFPF. A task of application is the work assigned
to each thread, which can execute on different processors to
finish a certain function. Also, the application could provide
the relative information of task length. The length of a task
is determined by the number of iterations in this paper, such
as loop functions. We estimate the length of a task based on
the number of iterations assigned to each thread, because it is
impossible to predict the exact execution time at compile time.
However, using the system calls, it can send the relative task
length information to the operating system kernel by revising
the application before a thread is created. By statical analysis,
the application can easily obtain the number of iterations for
each thread at the compile time.

In the sense of efficiencies of the overall multi-processor,
the longest job/task, only from the perspective of task length,

should be assigned to the fast processor to improve the overall
performance. The length of a job can be estimated by the
iterations just mentioned above.

B. Local Priority Parameters

Multi-thread systems concern with the resources sharing,
which are different from the single threaded systems, because
of the interactions and communications among the threads.
Usually, these shared resources can only be used by one
task at a time, and the use of shared resource cannot be
interrupted if one task is using it. Such resources are said
to be serially reusable, which may include certain peripherals,
shared memory, and the CPU. The CPU protects itself against
the simultaneous uses through synchronization mechanism,
such as semaphores and locks. There exists a code section,
which called a critical region, to keep the synchronization
use. If two or more threads enter into the same critical region
simultaneously, a catastrophic error can happen.

One of the most common operations for the critical region
is waiting during the thread interactions, such as waiting for
entering(acquiring a lock/semaphores operation) or waiting
for all the threads to finish(barrier operation). This waiting
would definitely waste a lot of CPU time, especially for the
thread taking a long time to use the critical region and other
remaining threads doing nothing except for the waiting. For
those threads that cannot acquire a lock to enter critical region,
the operating systems have no choice but to put them into
the sleep state. When the thread that had the lock releases
the excludable lock, it wakes up a waiting thread. Also,
this process needs to reload certain necessary parameters to
enter the critical region. When a certain thread wakes up,
the scheduler of operating system sends the thread to an idle
processor to execute.

From the above descriptions of critical region, it would be
better to send a thread with the longer critical region to a fast
processor from the view of waiting of thread interactions, so
that this scheduling reduces the overall sleep states of threads
sets.

Real-time processors are often specified as having a start
time(release time) and a stop time(deadline). The release time
can be expressed as the time at which the process must start
after some events occurred that triggered the process. Also, the
deadline is the time by which the task must complete, so the
scheduler must allot enough CPU time to the process so that
the related task can indeed complete. There usually exists two
deadlines: hard deadline and soft deadline. A hard deadline
is the one in which there is no value to the computation if it
completes after the deadline, while a soft deadline is the value
of a late result diminishes but does not immediately disappear
with time.

C. Local Priority Assignment

Based on the needs of critical regions and the deadline
of tasks, we first assign local priorities to the tasks. This
assignment is called local priority assignment, which is based
on local data(critical region requirements and deadline of

tasks). This priority assignment problem is proven to be a
NP-complete problem [12]. Finding an optimal solution is
generally not feasible for the large size problems. Here we
use a heuristic to solve this problem.

The flow of the heuristic for local priority is shown in Fig. 2.
The basic idea is to define the local deadlines of tasks over
iteration steps, then assign the local priorities based on the
deadlines and utilizations of critical regions. Intuitively, earlier
deadlines obtain higher priorities and longer local deadlines
assign lower priorities. Meanwhile, the higher utilization of
the critical region for tasks, the higher of priorities.

Fig. 2. Local Priority Assignment Algorithm

Algorithm 1 Update Local Priority(K1)
1: Initialize the critical region ε of every task
2: for all task τi do
3: ∆cτi = tτi ∗ (1− Στi∈T (e)cτi/tτi)
4: cτi = cτi + ∆cτi
5: end for
6: for all task τj ∈ (lp(τi)) ∪ {τi} do
7: update rτiand deadlines
8: end for
9: for all task τi do

10: εNτi = ετi/maxτi∈T (e)ετi
11: dτi = dτi ∗ (1−K1 ∗ εNτi)
12: end for

Initially, the deadlines of tasks are the same as their periods
which real-time processors require. After initialization, dead-
lines of tasks are modified and the priorities are assigned using
the approach of Deadline-Monotonic [14] [13]. However, there
no exists guarantee that the deadline-monotonic policy is
optimal for multi-tasks running on multi-processor with non-
preemptive critical regions, and there is no optimal counterpart
that can be used here. The deadline-monotonic mechanism
together with critical region restriction are a sensible choice
in the context of this heuristics.

During the iterations, deadlines and local priorities of tasks
are updated simultaneously, as shown in Algorithm 1.

Before talking about Update Local Priority Algorithm, it
is necessary to give some definitions to fully understand this
algorithm. T = {τ1, τ2, ..., τn} is the set of tasks that perform
the computations, where τi represents a periodically activated
task with period tpi . ε represents the value of critical region.
Here, we use the execution time of a task executing on a
critical region as ε. The critical region of a task reflects how
much the response times are affected by extensions in the
execution times of other tasks. cτi is a worst case computation
time of task τi; rτi represents the corresponding response time
and dτi represents the corresponding deadline. ∆cτi is the
increasement of execution time after the execution of critical
region. lp(τi) means the set of tasks with priorities lower than
task τi. First, we initialize the critical region ε of every task
according to their executing time on the critical regions. Then,
we recalculate the increase of execution time for each task.
After obtaining the cτi , the response time and deadlines of
task τi and of lower priority tasks on the same critical region as
τi is also recomputed. The numerical values of critical region
are normalized, obtaining a value εN for each task, and finally
the local deadlines are computed as d = d ∗ (1−K1 ∗ εN).

The parameter K1 is initially set to 1 here, then if needs,
adjusted in the later iteration steps using the complex strate-
gies, such as taking the number of iteration steps of entering
critical region and the number of times the priority assignment
remains unchanged into account. After updating the local
deadlines, it checks the stop conditions. The stop conditions
can be varied according to the actual requirements of tasks,
such as the number of iterations steps for each task. If the
stop conditions reached, the priority assignment will finish,
otherwise, it keeps iterating. After the update local priority
algorithm, we assign the local priority according to their
updated deadlines which consider the requirements of critical
regions.

D. Regression Modelling

There usually exists hundreds or thousands of tasks waited
for executing on multi-core processors. So many tasks compete
for the limited processors, to keep them schedule and coop-
erate each other correctly, these tasks need to assign multi-
priority to determine the orders of execution and the processors
that are best suitable to execute for them from the overall
perspectives.

As we presented above, several factors together affect the
scheduling of threads on multi-processor. Regression mod-
elling, usually used in machine learning areas, has been
proposed to predict performance and priorities [15]. Here, we
use regression modelling to assign the priorities to the waiting
scheduled tasks to achieve much better overall performance.
We identify the key performance parameters that are most
related to the energy consumption of the scheduled tasks.
The three selected key performance parameters include energy
provided by energy modelling in Section II, the length of task
which can be expressed as execution time execution time as
well as the local priority local priority. After identifying
the three key performance parameters, we specify a linear

regression model as shown in equation (1) to assign the
priority of each task with respect to the evaluated priorities. β1,
β2, β3 denote the corresponding regression coefficients, which
can be interpreted as the expected change in the priorities for
multiple tasks in energy modelling, execution time as well as
the local priority.

priority = β0 + β1 × energy
+ β2 × execution time

+ β3 × local priority (1)

Fig. 3. Regression Model to Assign Priority

Based on the predicted priorities, we propose a new schedul-
ing policy, called OJFPF. The basic idea of OJFPF is that
when a task has higher assigned priority than others, the
scheduler sends this task to a fast processor. Tasks can usually
have different and unique priorities due to the processes of
assigning priority by linear regression model. However, if there
are two or more tasks have the same priority, here we set
energy consumption prior to local priority which is prior to
execution time to assign the processor. If all three parameters
are the same for the scheduled tasks having highest priority,
we randomly select a task to a fast processor.

IV. EVALUATIONS AND RESULTS

In order to evaluate the effectiveness of our scheduling
algorithm on heterogeneous Multi-Processor, we conduct our
experiments on the Loongson-3B1500 Platform, which is
designed by Institute of Computing Technology, Chinese
Academy of Sciences. This Multi-Processor maintains eight-
core architectures, which the operating frequency ranges from
1.0 GHz to 1.5 GHz, depending on the core voltage supplies
varied from 1.0 V to 1.3 V [16].

In the experiments, we modify several applications so that
they send the task-related and system-related information to
the kernel and scheduler using the system calls before a thread
is created. Here we give an example of modification. When a
task calls pthread create() to create a thread, it calls a serial of
system calls sys clone(), do fork() as well as copy process()
functions sequentially. To schedule a newly created thread, the
system scheduler uses the sched fork() function. After modi-
fication, it passes task information to the scheduler using new
system calls and modify both copy process() and sched fork()
functions to use this information.

To derive the parameters information and regression model
in section II and III, we need to develop the training data

to train the model. To generate these training data, we ran-
domly select 8 benchmarks from SPEC CPU206 [17], which
include 4 integer benchmarks(bzip2, gcc, mcf and astar) and
4 floating point benchmarks(gamess, milc, povray and lbm).
We collect the hardware performance data and task-related
data separately. The hardware performance data is collected
by hardware performance counters using the Linux Perfctr
Library, and the task-related data is collected with the tools
of Pin [18] which both are customized program analysis tools
with the dynamic instrumentations. With this training data,
we evaluate and build the parameters and regression model
by using statistical package R [19] which is used for statistic
computing.

We compared the performance of our scheduling scheme
with other popular scheduling algorithms. Earliest Deadline
First(EDF) scheduling is an optimal scheduler for fully pre-
emptive sporadic tasks with constrained deadlines on a single
processor [20]. Deadline-Monotonic(DM) algorithm is also
excellent real-time scheduling algorithm related with deadline
requirements [20]. With the same parameters and regression
model, we randomly select other four SPEC CPU2006 bench-
marks(gobmk, omnetpp, cactusADM and GemsFDTD) to eval-
uate the our scheduling as well as other scheduling algorithms.
We revise the benchmarks interfaces and bind these four
randomly selected benchmarks as one test set sequentially. In
this experiment, we use the number of iterations (#iterations)of
the revised test set to represent the workload of tasks, and the
number of iterations range from 1 to 100.

To better show the uniform performance of our scheduling,
we use the normalized methods to normalize the corresponding
results, ranging from 0% to 100%, such as Total Energy,
Execution Time as well as the number of tasks shifts among
processors. Equation(2) shows the normalized method, where
R(a) is the result set for the type of parameter a. Here we
treat the maximum metric of each measurement as the base
line when the number of iteration is equal to 1.

aN = a/maxa∈R(a)a (2)

In our experiments, we evaluate the results from three per-
spectives, which are the normalized total energy consumption,
the normalized execution time as well as the number of tasks
shifts among the processors. The reason why we select the
normalized methods is that we conduct extensive simulations
and the range of results data is very wide. If drawing so wide
data in one direction, the figure is very vague and hard to
understand.

From Fig. 4, it can be seen that when the number of iteration
is less than 8, the number of processors of multi-processor, the
total energy consumptions are almost the same for EDF, DM
as well as our method OJFPF. However, when the number
of iterations are larger than 8, we could see that the rates of
increases for EDF and DM are very high than OJFPF. As the
increase of the number of iterations, the energy consumed by
OJFPF algorithm is much more stable and less than that of
others.

Fig. 4. The Trend of Normalized Total Energy

For the execution time with respects to the number of
iterations, shown in Fig. 5, the trend is almost the same with
the trend of energy consumption. However, it can be seen that
our method is much stable compared with others. This also
indicate the energy consumption has the direct relation with
the execution time.

Fig. 5. The Trend of Execution Time

Fig. 6 shows the number of tasks shifts among the proces-
sors. It can be seen from the Fig. 6 that when the number of
iterations are less than 8, there almost no shift exists. However,
with the increase of iterations, the number of shifts are sharply
increase for EDF and DM schedulings and the number of shifts
increase very slow for OJFPF scheduling.

Table II shows the performance increases for our method
OJFPF, in average cases of energy consumption, execution
time as well as the number of reduced shifts, compared to the
EDF and DM algorithms when the number of executing tasks
range from 8 to 100.

Fig. 6. The Trend of Number of Tasks Shifts

TABLE II
THE AVERAGE INCREASES(%) COMPARED TO EDF AND DM

SCHEDULINGS

Energy Time #Shifts
EDF 12% 16% 35%
DM 11.5% 15% 34.25%

V. CONCLUSION

This paper proposed a energy-aware real-time scheduling
algorithm, OJFPF, which sends the evaluated optimal job to
the fast processor in the heterogeneous multi-processor archi-
tectures. This algorithm uses both the hardware and software
level parameters to assign the priorities to multiple tasks
achieving an optimal assignment based on selected parameters.
Extensive simulations on Loongson Multi-Processor architec-
ture show the significant improvements in energy consumption
and execution time as well as the reduced tasks shifts among
processors.

REFERENCES

[1] Cong, Jason, and Bo Yuan. ”Energy-efficient scheduling on heterogeneous
multi-core architectures.” Proceedings of the 2012 ACM/IEEE interna-
tional symposium on Low power electronics and design. ACM, 2012.

[2] Hill, Mark D., and Michael R. Marty. ”Amdahl’s Law in the Multicore
Era.” IEEE Computer 41.7 (2008): 33-38.

[3] Kumar, Rakesh, et al. ”Single-ISA heterogeneous multi-core architec-
tures: The potential for processor power reduction.” Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on. IEEE, 2003.

[4] Leung, Joseph Y-T., and Jennifer Whitehead. ”On the complexity of fixed-
priority scheduling of periodic, real-time tasks.” Performance evaluation
2.4 (1982): 237-250.

[5] Liu, Chung Laung, and James W. Layland. ”Scheduling algorithms for
multiprogramming in a hard-real-time environment.” Journal of the ACM
(JACM) 20.1 (1973): 46-61.

[6] Dertouzos, Michael L., and Aloysius K. Mok. ”Multiprocessor online
scheduling of hard-real-time tasks.” Software Engineering, IEEE Trans-
actions on 15.12 (1989): 1497-1506.

[7] Awan, Muhammad Ali, and Stefan M. Petters. ”Energy-aware partitioning
of tasks onto a heterogeneous multi-core platform.” Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE
19th. IEEE, 2013.

[8] Davis, Robert I., and Marko Bertogna. ”Optimal Fixed Priority Schedul-
ing with Deferred Pre-emption.” RTSS. 2012.

[9] Lakshminarayana, Nagesh, Sushma Rao, and Hyesoon Kim. ”Asymmetry
aware scheduling algorithms for asymmetric multiprocessors.” (2008).

[10] Isci, Canturk, et al. ”An analysis of efficient multi-core global power
management policies: Maximizing performance for a given power bud-
get.” Proceedings of the 39th annual IEEE/ACM international symposium
on microarchitecture. IEEE Computer Society, 2006.

[11] Wang, Gang, et al. ”Test and Repair Flow for Shared BISR in
Asynchronous Multi-processors.” Asynchronous Circuits and Systems
(ASYNC), 2014 20th IEEE International Symposium on. IEEE, 2014.

[12] Kopetz, Hermann. Real-time systems: design principles for distributed
embedded applications. Springer, 2011.

[13] Zhu, Qi, et al. ”Optimizing extensibility in hard real-time distributed
systems.” Real-Time and Embedded Technology and Applications Sym-
posium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009.

[14] Audsley, Neil C., et al. ”Real-Time scheduling: the deadline-monotonic
approach.” in Proc. IEEE Workshop on Real-Time Operating Systems
and Software. 1991.

[15] Dantzig, George B., and Mukund N. Thapa. Linear Programming 1: 1:
Introduction. Vol. 1. Springer, 1997.

[16] Loongson-3B1500 Design Specification Version 1.5. Institute of Com-
puting Technology, Chinese Academy of Sciences, July 2013.

[17] http://www.spec.org/cpu2006/publications/CPU2006benchmarks.pdf
[18] Luk, Chi-Keung, et al. ”Pin: building customized program analysis tools

with dynamic instrumentation.” ACM Sigplan Notices 40.6 (2005): 190-
200.

[19] R Tools: http://www.r-project.org/
[20] Baker, Theodore P. ”Multiprocessor EDF and deadline monotonic

schedulability analysis.” 2013 IEEE 34th Real-Time Systems Symposium.
IEEE Computer Society, 2003.

